1. bookVolume 31 (2013): Issue 3 (August 2013)
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Open Access

Investigation on multiferroic properties of BiFeO3 ceramics

Published Online: 29 Aug 2013
Volume & Issue: Volume 31 (2013) - Issue 3 (August 2013)
Page range: 471 - 475
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

BiFeO3 polycrystalline ceramics was prepared by solid-state reaction method and its structural, optical and magnetic properties were investigated. BiFeO3 was synthesized in a wide range of temperature (825–880 °C) and a well crystalline phase was obtained at a sintering temperature of 870 °C. X-ray diffraction patterns of the samples were recorded and analyzed for the confirmation of crystal structure and the determination of the lattice parameters. The average grain size of the samples was found to be between 1–2 μm. The determined value of direct bandgap of BiFeO3 ceramics was found to be 2.72 eV. The linear behavior of M-H curve at room temperature confirmed antiferromagetic properties of the BiFeO3 (BFO). S shaped M-H curve was obtained at a temperature of 5 K. In the whole temperature measurement range (5–300 K) of M-T, no anomalies were observed due to high Curie temperature and Neel temperature of the BiFeO3.

Keywords

[1] Hur N., Park S., Sharma P.A., Ahn J.S., Guha S., Cheong S.W., Nature (2004), 392. 10.1038/nature02572Search in Google Scholar

[2] Catalan G. et al., Phys. Rev. Lett., 100 (2008), 027602. http://dx.doi.org/10.1103/PhysRevLett.100.02760210.1103/PhysRevLett.100.027602Search in Google Scholar

[3] Wang Y., Nan C. W., Appl. Phys. Lett., 89 (2006), 052903. http://dx.doi.org/10.1063/1.222224210.1063/1.2222242Search in Google Scholar

[4] Hill N.A., J. Phys. Chem. B, 104 (2000), 6694. http://dx.doi.org/10.1021/jp000114x10.1021/jp000114xSearch in Google Scholar

[5] Wang J. et al., Science, 299 (2003), 1719. http://dx.doi.org/10.1126/science.108061510.1126/science.1080615Search in Google Scholar

[6] Gao F. et al., Adv. Mater., 19 (2007), 2889. http://dx.doi.org/10.1002/adma.20060237710.1002/adma.200602377Search in Google Scholar

[7] Takahashi K., Kida N., Tonouchi M., Phys. Rev. Lett., 96 (2006), 117402. http://dx.doi.org/10.1103/PhysRevLett.96.11740210.1103/PhysRevLett.96.117402Search in Google Scholar

[8] Popov Y. F., Kadomtseva A. M., Vorobev G. P., Zvezdin A. K., Ferroelectrics, 162 (1994), 135. http://dx.doi.org/10.1080/0015019940824509810.1080/00150199408245098Search in Google Scholar

[9] Murashov V. A., Rakov D. N., Ionov V. M., Dubenko I. S., Titov Y. V., Gorelik V. S., Ferroelectrics, 11 (1994), 162. 10.1080/00150199408245085Search in Google Scholar

[10] Bai F. et al., Appl. Phys. Lett., 86 (2005), 32511. http://dx.doi.org/10.1063/1.185161210.1063/1.1851612Search in Google Scholar

[11] Prellier W., Singh M. P., Murugavel P., J. Phys., Condens. Matter, 17 (2005), R803. http://dx.doi.org/10.1088/0953-8984/17/30/R0110.1088/0953-8984/17/30/R01Search in Google Scholar

[12] Kubel F., Schmid H., Acta Cryst. B, 46 (1990), 698. http://dx.doi.org/10.1107/S010876819000688710.1107/S0108768190006887Search in Google Scholar

[13] Palai R. et al., Phys. Rev. B, 77 (2008), 014110. http://dx.doi.org/10.1103/PhysRevB.77.01411010.1103/PhysRevB.77.014110Search in Google Scholar

[14] Gujar T.P., Shinde V. R., Lokhande C.D., Mater. Chem. Phys., 103 (2007), 142. http://dx.doi.org/10.1016/j.matchemphys.2007.02.00310.1016/j.matchemphys.2007.02.003Search in Google Scholar

[15] Fruth V. et al., J. Eur. Ceram. Soc., 27 (2007), 937. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.04.13510.1016/j.jeurceramsoc.2006.04.135Search in Google Scholar

[16] Clark S. J., Robertson J., Appl. Phys. Lett., 90 (2007), 132903. http://dx.doi.org/10.1063/1.271686810.1063/1.2716868Search in Google Scholar

[17] Ihlefeld J. F. et al., J. Appl. Phys. Lett., 92 (2008), 142908. http://dx.doi.org/10.1063/1.290116010.1063/1.2901160Search in Google Scholar

[18] Xu Y., Shen M., Mat. Lett., 62 (2008), 3600. http://dx.doi.org/10.1016/j.matlet.2008.04.00610.1016/j.matlet.2008.04.006Search in Google Scholar

[19] Tauc J. (Ed.), Amorphous and Liquid Semiconductor, Plenium Press, New York, 1974, 159. 10.1007/978-1-4615-8705-7_4Search in Google Scholar

[20] Lebeugle D. et al., Phys. Rev. B, 76 (2007), 024116. http://dx.doi.org/10.1103/PhysRevB.76.02411610.1103/PhysRevB.76.024116Search in Google Scholar

[21] Sosnowska I., Peterlin-neumaier T., Steichele E., J. Phys. C, 15 (1982), 4835. http://dx.doi.org/10.1088/0022-3719/15/23/02010.1088/0022-3719/15/23/020Search in Google Scholar

[22] Sosnowska I., Loewenhaupt M., David W. I. F., Physica B, 117 (1992), 180. 10.1016/0921-4526(92)90678-LSearch in Google Scholar

[23] Jun Lu et al., Euro. Phys. J. B, 75 (2010), 451. http://dx.doi.org/10.1140/epjb/e2010-00170-x10.1140/epjb/e2010-00170-xSearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo