1. bookVolume 29 (2011): Issue 4 (December 2011)
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Systematic study on synthesis and purification of double-walled carbon nanotubes synthesized via CVD

Published Online: 08 May 2012
Volume & Issue: Volume 29 (2011) - Issue 4 (December 2011)
Page range: 292 - 298
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Carbon nanotubes have unique properties, such as thermal and electrical conductance, which could be useful in the fields of aerospace, microelectronics and biotechnology. However, these properties may vary widely depending on the dimensions, uniformity and purity of the nanotube. Nanotube samples typically contain a significant percentage of more allotropes forms of carbon as well as metal particles left over from catalysts used in manufacturing. Purity characterization of double-walled carbon nanotubes (DWCNTs) is an increasingly popular topic in the field of carbon nanotechnology. In this study, DWCNTs were synthesized in a catalytic reaction, using Fe:MgO as catalyst and methane or methane/ethanol as carbon feedstock for chemical vapor deposition (CVD). The addition of ethanol as carbon feedstock allowed to investigate the influence of oxygen on the sample quality. The purification of the as-produced material from the metallic particles and the catalyst support was performed by sonication in an acid solution. The influence of the duration of the acid treatment using ultrasound on the sample purity was investigated, and the optimal value of this parameter was found. Transmission electron microscopy (TEM) images confirmed the removal of impurities and served to elucidate the morphology of the samples. The purity of carbon nanotubes was analyzed using thermal gravimetric analysis (TGA). The Raman spectra of the samples, as a measure of the concentration of defects, were also reported.

Keywords

[1] IIJIMA S. Nature, 354,6348 (1991), 56–58. http://dx.doi.org/10.1038/354056a010.1038/354056a0Search in Google Scholar

[2] ANDREWS R. JACQUES D. QIAN D. and DICKEY E.C. Carbon, 39,11 (2001), 1681–1687. http://dx.doi.org/10.1016/S0008-6223(00)00301-810.1016/S0008-6223(00)00301-8Search in Google Scholar

[3] FRANK S. PONCHARAL P. WANG Z.L. DE HEER WA. Carbon Nanotube Quantum Resistors Science, 280,5370 (1998), 1744–1746. 10.1126/science.280.5370.1744Search in Google Scholar

[4] KONG J. ZHOU C. MORPURGO A. SOH HT. QUATE CF. MARCUS C. DAI H. Applied Physics A: Materials Science & Processing, 69,3 (1999), 305–308. http://dx.doi.org/10.1007/s00339005100510.1007/s003390051005Search in Google Scholar

[5] LIU C. FAN Y.Y. LIU M. CONG H.T. CHENG H.M. DRESSELHAUS M.S. Science, 286,5442 (1999), 1127–1129. http://dx.doi.org/10.1126/science.286.5442.112710.1126/science.286.5442.1127Search in Google Scholar

[6] ANDREWS R. JACQUES D. and RAO A.M. Journal of Physical Chemistry B, 303,5 (1999), 467–474. 10.1016/S0009-2614(99)00282-1Search in Google Scholar

[7] WU H.Q. WEI X.W. SHAO M.W. GU J.S. QU M.Z. Journal of Materials Chemistry, 12,6 (2002), 1919–1921. http://dx.doi.org/10.1039/b200470d10.1039/b200470dSearch in Google Scholar

[8] DAI H. Surface Science, 500 (2002), 218–241. http://dx.doi.org/10.1016/S0039-6028(01)01558-810.1016/S0039-6028(01)01558-8Search in Google Scholar

[9] QIAN D. DICKEY E.C. ANDREWS R. and RANTELL T. Applied Physics Letters, 76,20 (2000), 2868–2870. http://dx.doi.org/10.1063/1.12650010.1063/1.126500Search in Google Scholar

[10] WAGNER H.D. LOURIE O. FELDMAN Y. and TENNE R. Applied Physics Letters, 72,2 (1998),188–190. http://dx.doi.org/10.1063/1.12068010.1063/1.120680Search in Google Scholar

[11] TANS S.J. VERSHUEREN A.R.M. and DEKKER C. Nature, 393 (1998), 49–52. http://dx.doi.org/10.1038/2995410.1038/29954Search in Google Scholar

[12] CHOI H. C. KIM W. WANG D. DAI H. Journal of Physical Chemistry B, 106 (2002), 12361. http://dx.doi.org/10.1021/jp026421f10.1021/jp026421fSearch in Google Scholar

[13] HUANG W. WANG Y. LUO G. WEI F. Carbon, 41 (2003), 2585–2590. http://dx.doi.org/10.1016/S0008-6223(03)00330-010.1016/S0008-6223(03)00330-0Search in Google Scholar

[14] CHEUNG C. L. KURTZ A. PARK H. LIEBER C. M. Journal of Physical Chemistry B, 106 (2002), 2429. http://dx.doi.org/10.1021/jp014227810.1021/jp0142278Search in Google Scholar

[15] HYEON T. Chemical Communications, (2003), 927–934. 10.1039/b207789bSearch in Google Scholar

[16] KIM S. W. PARK J. JAMG Y. CHUNG Y. HWAN S. HYEON T. KIM Y. W. Nano Letters, 3 (2003), 1289–1291. http://dx.doi.org/10.1021/nl034340510.1021/nl0343405Search in Google Scholar

[17] YAMADA T. NAMAIL T. HATA K. FUTABA D. N. MIZUNO K. FAN J. YUDASAKA M. YUMURA M. IIJIMA S. Nature Nanotechnology, 1 (2006), 131–136. DOI:10.1038/nnano.2006.95. http://dx.doi.org/10.1038/nnano.2006.9510.1038/nnano.2006.95Search in Google Scholar

[18] BANDOWS. HIRAOKA T. YUMURA T. HIRAHARA K. SHINOHARA H. IIJIMA S. Chemical Physics Letters, 384 (2004), 320–325. http://dx.doi.org/10.1016/j.cplett.2003.12.03210.1016/j.cplett.2003.12.032Search in Google Scholar

[19] QIU H. X. SHI Z. J. GUAN L. H. YOU L. P. GAO M. ZHANG S. L. QIU J. S. GU Z. N. Carbon, 44 (2006), 516. http://dx.doi.org/10.1016/j.carbon.2005.08.02110.1016/j.carbon.2005.08.021Search in Google Scholar

[20] QIU J. S. WANG Z. Y. ZHAO Z. B. WANG T. H. Fuel, 86 (2007), 282. http://dx.doi.org/10.1016/j.fuel.2006.05.02410.1016/j.fuel.2006.05.024Search in Google Scholar

[21] YANG Q. H. TONG Y. LIU C. LI F. and CHENG H. M. Carbon, 43 (2005), 2013. http://dx.doi.org/10.1016/j.carbon.2005.01.03810.1016/j.carbon.2005.01.038Search in Google Scholar

[22] YULIANG A. QINGYI H. Wang J. ZHAOHUI Z. ZHAO H. ZHANG G. Journal of Rare Earths, 28,5 (2010), 717. http://dx.doi.org/10.1016/S1002-0721(09)60187-310.1016/S1002-0721(09)60187-3Search in Google Scholar

[23] LYU S. C. LEE T. J. YANG C. W. LEE C. J. Chemical Communications, 12 (2003), 1404. http://dx.doi.org/10.1039/b302322b10.1039/b302322bSearch in Google Scholar

[24] PAULA Q. ALBERT G. N. DAVID G. UNTO T. JIANG H. TAKU T. KESTAS G. JOSE A. D. ESKO I. K. Carbon, 44 (2006), 1581. http://dx.doi.org/10.1016/j.carbon.2006.01.02810.1016/j.carbon.2006.01.028Search in Google Scholar

[25] FLAUHAUT E. BACSA R. PEIGNEY A. LAURENT CH. Chemical Communications, (2003), 1442. 10.1039/b301514aSearch in Google Scholar

[26] SHELIMOV K.B. ESENALIEV R.O. and RINZLER A.G. Chemical Physics Letters, 2825 (1998), 429–434. http://dx.doi.org/10.1016/S0009-2614(97)01265-710.1016/S0009-2614(97)01265-7Search in Google Scholar

[27] SHIMODA H. FLEMING L. and HORTON K. Physica B, 323,1–4 (2002), 135–136. http://dx.doi.org/10.1016/S0921-4526(02)00877-310.1016/S0921-4526(02)00877-3Search in Google Scholar

[28] YUDASAKA M. ZHANG M. JABS C. IIJIMA S. Applied Physics A, 71,4 (2000), 449–451. http://dx.doi.org/10.1007/s00339000068810.1007/s003390000688Search in Google Scholar

[29] SATO Y. OGAWA T. and MOTOMIYA K. Journal of Physical Chemistry B, 105,17 (2001), 3387–3392. http://dx.doi.org/10.1021/jp002817k10.1021/jp002817kSearch in Google Scholar

[30] CHIANG I.W. BRINSON B.E. and SMALLEY R.E. Journal of Physical Chemistry B, 105,6 (2001), 1157–1161. http://dx.doi.org/10.1021/jp003453z10.1021/jp003453zSearch in Google Scholar

[31] CHEN X.H. CHEN C.S. and CHEN Q. Materials Letters, 57 (2002), 734–738. http://dx.doi.org/10.1016/S0167-577X(02)00863-710.1016/S0167-577X(02)00863-7Search in Google Scholar

[32] LAMBERT J.M. AJAYAN P.M. BERNIER P. and PLANEIX J.M. Chemical Physics Letters, 226,3–4 (1994), 364–371. http://dx.doi.org/10.1016/0009-2614(94)00739-X10.1016/0009-2614(94)00739-XSearch in Google Scholar

[33] BACHMATIUK A. BOROWIAK-PALEN E. RÜMMELI M.H. KRAMBERGER C. HÜBERS H.W. GEMMING T. PICHLER T. KALENCZUK R.J. Nanotechnology, 18 (2007), 275610. http://dx.doi.org/10.1088/0957-4484/18/27/27561010.1088/0957-4484/18/27/275610Search in Google Scholar

[34] STEPLEWSKA A. BOROWIAK-PALEN E. KALENCZUK R.J. Chemical Papers, 64,2 (2010), 255–260. http://dx.doi.org/10.2478/s11696-009-0111-x10.2478/s11696-009-0111-xSearch in Google Scholar

[35] HURST K.E. DILLON A.C. KEENAN D.A. and LEHMAN J.H. Chemical Physics Letters, 433,4–6 (2007), 301–304. http://dx.doi.org/10.1016/j.cplett.2006.11.02710.1016/j.cplett.2006.11.027Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo