1. bookVolume 29 (2011): Issue 3 (September 2011)
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

AC susceptibility study of YBCO

Published Online: 29 Feb 2012
Volume & Issue: Volume 29 (2011) - Issue 3 (September 2011)
Page range: 209 - 215
Journal Details
License
Format
Journal
eISSN
2083-134X
ISSN
2083-1331
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

The temperature dependence of ac susceptibility of YBCO bulk samples was measured as a function of ac field amplitude and frequency. Analysis of the temperature dependence of the ac susceptibility near the transition temperature (T c) has been done employing the simplified Kim model. We have obtained an empirical function for the penetration field H p = H α(1−t)β, t = T=T c. Best fitting to data was obtained with parameters H α ≈ 6:2 × 103 A/m and β ≈ 1.50. The experimental value agrees well with the model calculations. In addition, as the frequency increases, the peak temperature (T p) shifts to higher temperature. This effect can be interpreted in terms of flux creep. The field dependence of activation energy obtained from the Arrhenius plots for the frequency (f) and (T p) can be described as U ∝ (H ac)−β′ with β′ ≈ 0:38 for YBCO.

Keywords

[1] F. Gömöry, Supercond. Sci. Techno., 10 (1997), 583. http://dx.doi.org/10.1088/0953-2048/10/8/01010.1088/0953-2048/10/8/010Search in Google Scholar

[2] A. Gencer, Supercond. Sci. Techno., 15 (2002), 247. http://dx.doi.org/10.1088/0953-2048/15/2/31210.1088/0953-2048/15/2/312Search in Google Scholar

[3] A. Gencer, et al, Supercond. Sci. Techno., 15 (2002), 592. http://dx.doi.org/10.1088/0953-2048/15/4/31910.1088/0953-2048/15/4/319Search in Google Scholar

[4] C.P. Bean, Rev. Mod. Phys., 36 (1964), 31. http://dx.doi.org/10.1103/RevModPhys.36.3110.1103/RevModPhys.36.31Search in Google Scholar

[5] Y.B. Kim, C.F. Hempstead, A.R. Strnad, Phys. Lett., 9 (1962), 306. http://dx.doi.org/10.1103/PhysRevLett.9.30610.1103/PhysRevLett.9.306Search in Google Scholar

[6] D.X. Chen, R.B Goldfarb, J. Apply. Phys., 66(6) (1989), 2489. http://dx.doi.org/10.1063/1.34426110.1063/1.344261Search in Google Scholar

[7] T. ISHIDA, R.B. Goldfarb, Phys. Rev. B, 41 (1990), 8937. http://dx.doi.org/10.1103/PhysRevB.41.893710.1103/PhysRevB.41.8937Search in Google Scholar

[8] N. Güç Lü et al, Phys. Stat. Sol.(a), 201 (2004), 995. http://dx.doi.org/10.1002/pssa.20030677110.1002/pssa.200306771Search in Google Scholar

[9] N. Güç Lü et al, Modern Physics Letters B, 10–12 (2003), 691. Search in Google Scholar

[10] O. Ozoglu, A. Aydinuraz, Supercond. Sci.Technol., 14 (2001), 184. http://dx.doi.org/10.1088/0953-2048/14/4/30210.1088/0953-2048/14/4/302Search in Google Scholar

[11] H. Yasuoka et al, Physica C, 305 (1998), 125. http://dx.doi.org/10.1016/S0921-4534(98)00324-410.1016/S0921-4534(98)00324-4Search in Google Scholar

[12] K.H. Müller, Physica C, 168 (1990), 585. http://dx.doi.org/10.1016/0921-4534(90)90081-O10.1016/0921-4534(90)90081-OSearch in Google Scholar

[13] M, Nikolo, R.B. Goldfarb, Phys. Rev. B, 39 (1989), 6615. http://dx.doi.org/10.1103/PhysRevB.39.661510.1103/PhysRevB.39.6615Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo