1. bookVolume 29 (2011): Issue 1 (March 2011)
Journal Details
License
Format
Journal
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
access type Open Access

Multiphase microwave dielectrics

Published Online: 03 Aug 2011
Page range: 47 - 55
Journal Details
License
Format
Journal
First Published
16 Apr 2011
Publication timeframe
4 times per year
Languages
English
Abstract

Several types of multiphase ceramic materials with excellent microwave (MW) dielectric properties have been considered. Studied materials were based on complex niobates and titanates with various crystal structures in which very high values of the MW quality factors (Q) can be attained. Slight compositional changes in the complex oxide systems have been shown to induce rather combined effect on the cation arrangement of separate crystal phases as well as on the microstructure and phase composition of multiphase ceramic materials. As a consequence, the ways to tailor MW dielectric parameters of the ceramics through a proper adjustment of both structure and distribution of enclosed phases have been presented and discussed. The examples of the multiphase MW dielectrics with enhanced properties have also been presented.

Keywords

[1] WERSING W., Curr. Opin. Solid State Mater. Sci., 1 (1996), 715. http://dx.doi.org/10.1016/S1359-0286(96)80056-8Search in Google Scholar

[2] SEBASTIAN M.T., Dielectric Materials for Wireless Communication, Elsevier Science, Oxford, U.K., 2008. Search in Google Scholar

[3] HUGHES H., IDDLES D.M., and REANEY I.M., Appl. Phys. Letters. 79[18] (2001), 2952. http://dx.doi.org/10.1063/1.1414296Search in Google Scholar

[4] LEE H.J., HONG K.S., KIM S.J., and KIM I.T., Mat. Res. Bull., 32[7] (1997), 847. http://dx.doi.org/10.1016/S0025-5408(97)00034-2Search in Google Scholar

[5] ZANG Y.C., YUE Z.X., GUI Z., and LI L.T., Mater. Lett., 57 (2003), 4531. http://dx.doi.org/10.1016/S0167-577X(03)00357-4Search in Google Scholar

[6] R.C. PULLAR, J.D. BREEZE, and Alford N. McN., J. Am. Ceram. Soc., 88[9] (2005), 2466. http://dx.doi.org/10.1111/j.1551-2916.2005.00458.xSearch in Google Scholar

[7] SREEDHAR K. and MITRA A., Mater.Res.Bull., 32[12] (1997), 1643. http://dx.doi.org/10.1016/S0025-5408(97)00154-2Search in Google Scholar

[8] KOLODIAZHNYI T, PETRIC A., BELOUS A., V’YUNOV O., and YANCHEVSKIJ O., J. Mater. Res., 17[12] (2002), 3182. http://dx.doi.org/10.1557/JMR.2002.0460Search in Google Scholar

[9] ANANTA A., BRYDSON R., THOMAS N.W., J. Europ. Ceram. Soc., 19 [3] (1999), 355. http://dx.doi.org/10.1016/S0955-2219(98)00206-4Search in Google Scholar

[10] BELOUS A., OVCHAR O., BEZJAK J., JANCAR B., J. Europ. Ceram. Soc, 27[8–9] (2007), 2933. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.11.017Search in Google Scholar

[11] PULLAR R.C., J. Am. Ceram. Soc., 92[3] (2009), 563. http://dx.doi.org/10.1111/j.1551-2916.2008.02919.xSearch in Google Scholar

[12] KAN A., OGAWA H., YOKOI A., and OHSATO H., Jpn. J. Appl. Phys., 42 (2003), 6154. http://dx.doi.org/10.1143/JJAP.42.6154Search in Google Scholar

[13] YAMAGUCHI O., MARUYAMA N., and HIROTA K., J. Mater. Sci. Lett., 10 (1991), 445. http://dx.doi.org/10.1007/BF00838345Search in Google Scholar

[14] KIM D-W., KO K. H., and HONG K. S., J. Am. Ceram. Soc., 84[6] (2001), 1286. Search in Google Scholar

[15] KAVASHIMA S., NISHIDA M., UEDA I., OUCHI H., and HAYAKAWA S., Proc. Ferroelect. Mater. Applicat. 1 (1977), 293. Search in Google Scholar

[16] MATSUMOTO H., TAMURA H., and WAKINO K., Jpn. J. Appl. Phys. 30 (1991), 2347. http://dx.doi.org/10.1143/JJAP.30.2347Search in Google Scholar

[17] GALASSO F. and PYLE J., Inorg. Chem. 2[3], (1963), 482. http://dx.doi.org/10.1021/ic50007a013Search in Google Scholar

[18] DAVIES P. K., TONG J. and NEGAS T., J. Am. Ceram. Soc. 80[7] (1997), 1724. Search in Google Scholar

[19] AHN C.-W., JANG H.-J., NAHM S., PARK H.-M. and LEE H.-J.,. J. Eur. Ceram. Soc. 23 (2003), 2473. http://dx.doi.org/10.1016/S0955-2219(03)00151-1Search in Google Scholar

[20] AZOUGH F., LEACH C. and FREER R., J. Eur. Ceram. Soc. 26[14] (2006), 2877. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.02.004Search in Google Scholar

[21] BELOUS A., OVCHAR O., KRAMARENKO O., MISCHUK D., JANCAR B., SPREITZER M., ANNINO G., GREBENNIKOV D., and MASCHER P., Ferroelectrics, 387 (2009), 36. http://dx.doi.org/10.1080/00150190902966248Search in Google Scholar

[22] OVCHAR O., BELOUS A., KRAMARENKO O., MISCHUK D., JANCAR B., SPREITZER M., ANNINO G., GREBENNIKOV D., and MASCHER P., Ferroelectrics 387 (2009), 189. http://dx.doi.org/10.1080/00150190902967097Search in Google Scholar

[23] MALLISON P.M., ALLIX M.M., CLARIDGE J.B., IBBERSON R.M., IDDLES D.M., PRICE T., ROSSEINSKY M.J., Angew. Chem. Int. Ed. Engl. 44[47] (2005), 7733. http://dx.doi.org/10.1002/anie.200500135Search in Google Scholar

[24] SOHN J.-H.. INAGUMA Y., YOON S.-O., ITOH M., NAKAMURA T., YOON S.-J., KIM H.-J., Jpn.J.Appl.Phys., 33[9B] (1994), 5466. http://dx.doi.org/10.1143/JJAP.33.5466Search in Google Scholar

[25] ICHINOSE N. and YAMAMOTO H., Ferroelectrics, 201 (1997), 255. http://dx.doi.org/10.1080/00150199708228375Search in Google Scholar

[26] CHENG-LIANG H., CHUNG-LONG P., CHENG-CHI Y., J. Mater. Sci. Lett., 21 (2002), 149. http://dx.doi.org/10.1023/A:1014249332606Search in Google Scholar

[27] CHENG-LIANG H., CHUNG-LONG P., JUI-FENG H., Mat. Res. Bull., 37 (2002), 2483. http://dx.doi.org/10.1016/S0025-5408(02)00792-4Search in Google Scholar

[28] BELOUS A., OVCHAR O., DURILIN D., MACEK KRZMANC M., VALANT M., and SUVOROV D., J. Am. Ceram. Soc., 89[11] (2006), 3441. http://dx.doi.org/10.1111/j.1551-2916.2006.01271.xSearch in Google Scholar

[29] BELOUS A., OVCHAR O., DURILIN D., MACEK KRZMANC M., VALANT M., and SUVOROV D., J.Europ.Ceram.Soc, 27[8–9] (2007), 2963. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.11.022Search in Google Scholar

[30] PETROVA M. A., MIKIRTICHEVA G. A., NOVIKOVA A. S., and POPOVA V. F., J. Mater. Res., 12[10] (1997), 2584. http://dx.doi.org/10.1557/JMR.1997.0343Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo