This work is licensed under the Creative Commons Attribution 4.0 International License.
AGFW, Prognos AG, Hamburg Institut. Perspektive der Fernwärme. Maßnahmenprogramm 2030. Aus- und Umbau städtischer Fernwärme als Beitrag einer sozial-ökologischen Wärmepolitik 2020 (AGFW, Prognos AG, Hamburg Institute. District Heating Perspectives. 2030 Action Plan. Expansion and Conversion of Urban District Heating as a Contribution to a Socio-Ecological Heating Policy 2020). [Online]. [Accessed 25.04.2025]. Available: https://www.hamburg-institut.com/wp-content/uploads/2021/06/AGFW_Perspektive_der_Fernwaerme_2030_final.pdf (In German)Search in Google Scholar
Bosseler B. Managing the Crowded Underground. IKT Research & Testing 2012–2014, 2014.Search in Google Scholar
Bosseler B., Goerke M. Crowded Underground. IKT Research & Testing 2012–2014, 2014.Search in Google Scholar
Klameth M., Weidlich I., Achmus M. On the radial contact pressure of piggy-back laid Buried Pipes for District Heating. In 13th International Symposium on district heating and cooling: 3rd of September – 4th of September, Copenhagen, Denmark.Search in Google Scholar
Deutsches Institut für Normung e.V. DIN EN ISO 10456:2010-05: Building materials and products – Hygrothermal properties – Tabulated design values and procedures for determining declared and design thermal values (ISO 10456:2007 + Cor. 1:2009); German version EN ISO 10456:2007 + AC:2009(DIN EN ISO 10456:2010-05). Berlin: Beuth, 2010.Search in Google Scholar
Madan V., Weidlich I. Investigation on Relative Heat Losses and Gains of Heating and Cooling Networks. Environmental and Climate Technologies 2021:25(1):479–490. https://doi.org/10.2478/rtuect-2021-0035Search in Google Scholar
Hillebrand B., Blokker E. J. M. Modeling the Influence of District Heating Systems on Drinking Water Temperatures in Domestic Drinking Water Systems within Domestic Properties. In: Baldwin L. A., Gude V. G., (eds). World Environmental and Water Resources Congress 2021. American Society of Civil Engineers, 2021. https://doi.org/10.1061/9780784483466.088Search in Google Scholar
Menberg K., Bayer P., Zosseder K., Rumohr S., Blum P. Subsurface urban heat islands in German cities. Science of The Total Environment 2013:442:123–133. https://doi.org/10.1016/j.scitotenv.2012.10.043Search in Google Scholar
Agudelo-Vera C. M., Blokker M., Kater H. de, Lafort R. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system. Drinking Water Engineering and Science 2017:10(2):83–91. https://doi.org/10.5194/dwes-10-83-2017Search in Google Scholar
Benz S. A., Bayer P., Menberg K., Jung S., Blum P. Spatial resolution of anthropogenic heat fluxes into urban aquifers. Science of the Total Environment 2015:524–525:427–439. https://doi.org/10.1016/j.scitotenv.2015.04.003Search in Google Scholar
DVGW. Technical rules for water supply systems – Part 1: Design (W 400-1:2015-02), 2015.Search in Google Scholar
Bøhm B. On transient heat losses from buried district heating pipes. International Journal of Energy Research 2000:24(15):1311–1334. https://doi.org/10.1002/1099-114x(200012)24:15Search in Google Scholar
Dalla Rosa A., Li H., Svendsen S. Method for optimal design of pipes for low-energy district heating, with focus on heat losses. Energy 2011:36(5):2407–18. https://doi.org/10.1016/j.energy.2011.01.024Search in Google Scholar
Persson T., Wollerstrand J. Calculation of Heat Flow from buried Pipes using a time-dependent Finite Element Model. In: Elmegaard B., Sporring J., Erleben K., Sorensen K., (eds). Proceedings of SIMS 2004: 45th International Conference of Scandinavian Simulation Society, 2004.Search in Google Scholar
Danielewicz J., Śniechowska B., Sayegh M. A., Fidorów N., Jouhara H. Three-dimensional numerical model of heat losses from district heating network pre-insulated pipes buried in the ground. Energy 2016:108:172–84. https://doi.org/10.1016/j.energy.2015.07.012Search in Google Scholar
CEN. EN 13941-1:2019+A1:2021 – District heating pipes – Design and installation of thermal insulated bonded single and twin pipe systems for directly buried hot water networks – Part 1: Design 2021.Search in Google Scholar
Abu-Hamdeh N. H. Thermal Properties of Soils as affected by Density and Water Content. Biosystems Engineering 2003:86(1):97–102. https://doi.org/10.1016/S1537-5110(03)00112-0Search in Google Scholar
Perpar M., Rek Z., Bajric S., Zun I. Soil thermal conductivity prediction for district heating pre-insulated pipeline in operation. Energy 2012:44(1):197–210. https://doi.org/10.1016/j.energy.2012.06.037Search in Google Scholar
Bristow K. L. Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes. Agricultural and Forest Meteorology 1998:89(2):75–84. https://doi.org/10.1016/S0168-1923(97)00065-8Search in Google Scholar
Schuchardt G. K., Weidlich I. Sensitivity analysis of the conception of small scale district heating networks on the thermal conductivity of the surrounding soil. Energy Procedia 2017:128:136–43. https://doi.org/10.1016/j.egypro.2017.09.028Search in Google Scholar
Eslami H., Cuisinier O., Masrouri F. Modelling of coupled heat and moisture flows around a buried electrical cable. E3S Web Conf. 2016:9:16011. https://doi.org/10.1051/e3sconf/20160916011Search in Google Scholar
Jarfelt U., Ramnäs O. New materials and constructions for improving the quality and livetime of district heating pipes including joints – thermal, mechanical and environmental performance. IEA DHC Annex VIII. 8DHC-08-01. Sittard: SenterNovem, 2008.Search in Google Scholar