Open Access

Thermal Behaviour of Piggyback-Laid District Heating and District Cooling Pipes

,  and   
Sep 10, 2025

Cite
Download Cover

AGFW, Prognos AG, Hamburg Institut. Perspektive der Fernwärme. Maßnahmenprogramm 2030. Aus- und Umbau städtischer Fernwärme als Beitrag einer sozial-ökologischen Wärmepolitik 2020 (AGFW, Prognos AG, Hamburg Institute. District Heating Perspectives. 2030 Action Plan. Expansion and Conversion of Urban District Heating as a Contribution to a Socio-Ecological Heating Policy 2020). [Online]. [Accessed 25.04.2025]. Available: https://www.hamburg-institut.com/wp-content/uploads/2021/06/AGFW_Perspektive_der_Fernwaerme_2030_final.pdf (In German) Search in Google Scholar

Bosseler B. Managing the Crowded Underground. IKT Research & Testing 2012–2014, 2014. Search in Google Scholar

Bosseler B., Goerke M. Crowded Underground. IKT Research & Testing 2012–2014, 2014. Search in Google Scholar

Klameth M., Weidlich I., Achmus M. On the radial contact pressure of piggy-back laid Buried Pipes for District Heating. In 13th International Symposium on district heating and cooling: 3rd of September – 4th of September, Copenhagen, Denmark. Search in Google Scholar

Deutsches Institut für Normung e.V. DIN EN ISO 10456:2010-05: Building materials and products – Hygrothermal properties – Tabulated design values and procedures for determining declared and design thermal values (ISO 10456:2007 + Cor. 1:2009); German version EN ISO 10456:2007 + AC:2009(DIN EN ISO 10456:2010-05). Berlin: Beuth, 2010. Search in Google Scholar

Madan V., Weidlich I. Investigation on Relative Heat Losses and Gains of Heating and Cooling Networks. Environmental and Climate Technologies 2021:25(1):479–490. https://doi.org/10.2478/rtuect-2021-0035 Search in Google Scholar

Hillebrand B., Blokker E. J. M. Modeling the Influence of District Heating Systems on Drinking Water Temperatures in Domestic Drinking Water Systems within Domestic Properties. In: Baldwin L. A., Gude V. G., (eds). World Environmental and Water Resources Congress 2021. American Society of Civil Engineers, 2021. https://doi.org/10.1061/9780784483466.088 Search in Google Scholar

Menberg K., Bayer P., Zosseder K., Rumohr S., Blum P. Subsurface urban heat islands in German cities. Science of The Total Environment 2013:442:123–133. https://doi.org/10.1016/j.scitotenv.2012.10.043 Search in Google Scholar

Agudelo-Vera C. M., Blokker M., Kater H. de, Lafort R. Identifying (subsurface) anthropogenic heat sources that influence temperature in the drinking water distribution system. Drinking Water Engineering and Science 2017:10(2):83–91. https://doi.org/10.5194/dwes-10-83-2017 Search in Google Scholar

Benz S. A., Bayer P., Menberg K., Jung S., Blum P. Spatial resolution of anthropogenic heat fluxes into urban aquifers. Science of the Total Environment 2015:524–525:427–439. https://doi.org/10.1016/j.scitotenv.2015.04.003 Search in Google Scholar

DVGW. Technical rules for water supply systems – Part 1: Design (W 400-1:2015-02), 2015. Search in Google Scholar

Bøhm B. On transient heat losses from buried district heating pipes. International Journal of Energy Research 2000:24(15):1311–1334. https://doi.org/10.1002/1099-114x(200012)24:15 Search in Google Scholar

Dalla Rosa A., Li H., Svendsen S. Method for optimal design of pipes for low-energy district heating, with focus on heat losses. Energy 2011:36(5):2407–18. https://doi.org/10.1016/j.energy.2011.01.024 Search in Google Scholar

Persson T., Wollerstrand J. Calculation of Heat Flow from buried Pipes using a time-dependent Finite Element Model. In: Elmegaard B., Sporring J., Erleben K., Sorensen K., (eds). Proceedings of SIMS 2004: 45th International Conference of Scandinavian Simulation Society, 2004. Search in Google Scholar

Danielewicz J., Śniechowska B., Sayegh M. A., Fidorów N., Jouhara H. Three-dimensional numerical model of heat losses from district heating network pre-insulated pipes buried in the ground. Energy 2016:108:172–84. https://doi.org/10.1016/j.energy.2015.07.012 Search in Google Scholar

CEN. EN 13941-1:2019+A1:2021 – District heating pipes – Design and installation of thermal insulated bonded single and twin pipe systems for directly buried hot water networks – Part 1: Design 2021. Search in Google Scholar

Abu-Hamdeh N. H. Thermal Properties of Soils as affected by Density and Water Content. Biosystems Engineering 2003:86(1):97–102. https://doi.org/10.1016/S1537-5110(03)00112-0 Search in Google Scholar

Perpar M., Rek Z., Bajric S., Zun I. Soil thermal conductivity prediction for district heating pre-insulated pipeline in operation. Energy 2012:44(1):197–210. https://doi.org/10.1016/j.energy.2012.06.037 Search in Google Scholar

Bristow K. L. Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes. Agricultural and Forest Meteorology 1998:89(2):75–84. https://doi.org/10.1016/S0168-1923(97)00065-8 Search in Google Scholar

Schuchardt G. K., Weidlich I. Sensitivity analysis of the conception of small scale district heating networks on the thermal conductivity of the surrounding soil. Energy Procedia 2017:128:136–43. https://doi.org/10.1016/j.egypro.2017.09.028 Search in Google Scholar

Eslami H., Cuisinier O., Masrouri F. Modelling of coupled heat and moisture flows around a buried electrical cable. E3S Web Conf. 2016:9:16011. https://doi.org/10.1051/e3sconf/20160916011 Search in Google Scholar

Jarfelt U., Ramnäs O. New materials and constructions for improving the quality and livetime of district heating pipes including joints – thermal, mechanical and environmental performance. IEA DHC Annex VIII. 8DHC-08-01. Sittard: SenterNovem, 2008. Search in Google Scholar

Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Life Sciences, other