This work is licensed under the Creative Commons Attribution 4.0 International License.
Junedi M. M., Ludin N. A., Hamid N. H., Kathleen P. R., Hasila J., Ahmad Affandi N. A. Environmental and economic performance assessment of integrated conventional solar photovoltaic and agrophotovoltaic systems. Renewable and Sustainable Energy Reviews 2022:168:112799. https://doi.org/10.1016/j.rser.2022.112799Search in Google Scholar
Breyer C. Low-cost solar power enables a sustainable energy industry system. Proceedings of the National Academy of Sciences 2021:118(49):e2116940118. https://doi.org/10.1073/pnas.2116940118Search in Google Scholar
Albatayneh A., Albadaineh R. Evaluating Shading Effects of PV Systems: Discrepancies in Simulation Software and Energy Consumption. Environmental and Climate Technologies 2023:27(1):407–421. https://doi.org/10.2478/rtuect-2023-0030Search in Google Scholar
Grinevičiūtė M., Valančius K. Virtual Prosumers and the Impact of Remote Solar Parks on Lithuania’s Buildings Decarbonization Efforts. Environmental and Climate Technologies 2024:28(1):312–328. https://doi.org/10.2478/rtuect-2024-0025Search in Google Scholar
Valdmanis G., Rieksta M., Luksta I., Bazbauers G. Solar Energy Based Charging for Electric Vehicles at Fuel Stations. Environmental and Climate Technologies 2022:26(1):1169–1191. https://doi.org/10.2478/rtuect-2022-0088Search in Google Scholar
Hasan D. S., Farhan M. S., ALRikabi H. TH. S. The effect of irradiance, tilt angle, and partial shading on PV performance. AIP Conference Proceedings 2023:2457(1):050008. https://doi.org/10.1063/5.0120692Search in Google Scholar
Khanafer K., Al-Masri A., Marafie A., Vafai K. Thermal performance of solar photovoltaic panel in hot climatic regions: Applicability and optimization analysis of PCM materials. Numerical Heat Transfer, Part A: Applications 2024:85(10):1612–1632. https://doi.org/10.1080/10407782.2023.2207732Search in Google Scholar
Shaker L. M., Al-Amiery A. A., Hanoon M. M., Al-Azzawi W. K., Kadhum A. A. H. Examining the influence of thermal effects on solar cells: a comprehensive review. Sustainable Energy Research 2024:11(1):6. https://doi.org/10.1186/s40807-024-00100-8Search in Google Scholar
Mohammad A. T., Al-Shohani W. A. M. Numerical and experimental investigation for analyzing the temperature influence on the performance of photovoltaic module. AIMS Energy 2022:10(5):1026–1045. https://doi.org/10.3934/energy.2022047Search in Google Scholar
Green M. A., Emery K., Hishikawa Y., Warta W. Solar Cell Efficiency Tables (Version 35). Progress in Photovoltaics: Research and Applications 2010:18(2):144–150. https://doi.org/10.1002/pip.974Search in Google Scholar
Dhass A. D., Natarajan E., Lakshmi P. An investigation of temperature effects on solar photovoltaic cells and modules. International Journal of Engineering, Transactions B: Applications 2014:27(11):1713–1722. https://doi.org/10.5829/idosi.ije.2014.27.11b.09Search in Google Scholar
Williams H. J., Hashad K., Wang H., Zhang K. M. The potential for agrivoltaics to enhance solar farm cooling. Applied Energy 2023:332:120478. https://doi.org/10.1016/j.apenergy.2022.120478Search in Google Scholar
Smith S. E., Viggiano B., Ali N., Silverman T. J., Obligado M., Calaf M., Cal R. B. Increased panel height enhances cooling for photovoltaic solar farms. Applied Energy 2022:325:119819. https://doi.org/10.1016/j.apenergy.2022.119819Search in Google Scholar
Osma G., Ordóñez G., Hernández E., Quintero L., Torres M. The impact of height installation on the performance of PV panels integrated into a green roof in tropical conditions. WIT Transactions on Ecology and the Environment 2016:205:147–156. https://doi.org/10.2495/EQ160141Search in Google Scholar
Mamun M. A. A., Islam M. M., Hasanuzzaman M., Selvaraj J. Effect of tilt angle on the performance and electrical parameters of a PV module: Comparative indoor and outdoor experimental investigation. Energy and Built Environment 2022:3(3):278–290. https://doi.org/10.1016/j.enbenv.2021.02.001Search in Google Scholar
N’Tsoukpoe K. E. Effect of orientation and tilt angles of solar collectors on their performance: Analysis of the relevance of general recommendations in the West and Central African context. Scientific African 2022:15:e01069. https://doi.org/10.1016/j.sciaf.2021.e01069Search in Google Scholar
Sharma G. S., Mahela O. P., Hussien M. G., Khan B., Padmanaban S., Shafik M. B., Elbarbary Z. M. S. Performance Evaluation of a MW-Size Grid-Connected Solar Photovoltaic Plant Considering the Impact of Tilt Angle. Sustainability 2022:14(3):1444. https://doi.org/10.3390/su14031444Search in Google Scholar
Dubey S., Sarvaiya J. N., Seshadri B. Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World – A Review. Energy Procedia 2013:33:311–321. https://doi.org/10.1016/j.egypro.2013.05.072Search in Google Scholar
Ur Rehman S., Farooq M., Qamar A., Usman M., Ahmad G., Sultan M., Saleem M. W., Hussain I., Imran M., Ali Q., Javaid M. Y., Siddiqui F. A. Experimental investigation to thermal performance of different photo voltaic modules for efficient system design. Alexandria Engineering Journal 2022:61(12):12623–12634. https://doi.org/10.1016/j.aej.2022.06.037Search in Google Scholar
Adeeb J., Farhan A., Al-Salaymeh A. Temperature Effect on Performance of Different Solar Cell Technologies. Journal of Ecological Engineering 2019:20(5):249–254. https://doi.org/10.12911/22998993/105543Search in Google Scholar
Bilen K., Erdoğan İ. Effects of cooling on performance of photovoltaic/thermal (PV/T) solar panels: A comprehensive review. Solar Energy 2023:262:111829. https://doi.org/10.1016/j.solener.2023.111829Search in Google Scholar
Satpute J. B., Rajan J. A. Recent advancement in cooling technologies of solar photovoltaic (PV) system. FME Transactions 2018:46(4):575–584. https://doi.org/10.5937/fmet1804575SSearch in Google Scholar
Mariam E., Ramasubramanian B., Reddy V. S., Dalapati G. K., Ghosh S., PA T. S., Chakrabortty S., Motapothula M. R., Kumar A., Ramakrishna S., Krishnamurthy S. Emerging trends in cooling technologies for photovoltaic systems. Renewable and Sustainable Energy Reviews 2024:192:114203. https://doi.org/10.1016/j.rser.2023.114203Search in Google Scholar
Choi S. M., Park C-D., Cho S-H., Lim B-J. Effects of wind loads on the solar panel array of a floating photovoltaic system – Experimental study and economic analysis. Energy 2022:256:124649. https://doi.org/10.1016/j.energy.2022.124649Search in Google Scholar
Demirdelen T., Alici H., Esenboğa B., Güldürek M. Performance and Economic Analysis of Designed Different Solar Tracking Systems for Mediterranean Climate. Energies 2023:16(10):4197. https://doi.org/10.3390/en16104197Search in Google Scholar
Sun L., Bai J., Pachauri R. K., Wang S. A horizontal single-axis tracking bracket with an adjustable tilt angle and its adaptive real-time tracking system for bifacial PV modules. Renewable Energy 2024:221:119762. https://doi.org/10.1016/j.renene.2023.119762Search in Google Scholar
Kolhe M. Techno-Economic Optimum Sizing of a Stand-Alone Solar Photovoltaic System. IEEE Transactions on Energy Conversion 2009:24(2):511–519. https://doi.org/10.1109/TEC.2008.2001455Search in Google Scholar
Kumar N. M., Vishnupriyan J., Sundaramoorthi P. Techno-economic optimization and real-time comparison of sun tracking photovoltaic system for rural healthcare building. Journal of Renewable and Sustainable Energy 2019:11(1):015301. https://doi.org/10.1063/1.5065366Search in Google Scholar
Ghabuzyan L., Pan K., Fatahi A., Kuo J., Baldus-Jeursen C. Thermal Effects on Photovoltaic Array Performance: Experimentation, Modeling, and Simulation. Applied Sciences 2021:11(4):1460. https://doi.org/10.3390/app11041460Search in Google Scholar
Glick A., Smith S. E., Ali N., Bossuyt J., Recktenwald G., Calaf M., Cal R. B. Influence of flow direction and turbulence intensity on heat transfer of utility-scale photovoltaic solar farms. Solar Energy 2020:207:173–182. https://doi.org/10.1016/j.solener.2020.05.061Search in Google Scholar
Lacombe F. Vérification et validation d’une loi de paroi consistante du modèle de turbulence K-w SST, 2017.Search in Google Scholar
Al-Bana A. S., Zahran S., Ahmed M. M., Al-Sayaad K. M. Performance Analysis and Validation of Different Meshing Techniques Used for Computational Fluid Dynamics Simulation. 2022 International Telecommunications Conference (ITC-Egypt) 2022:1–5. https://doi.org/10.1109/ITC-Egypt55520.2022.9855763Search in Google Scholar
Heinrich R. Implementation and Usage of Structured Algorithms within an Unstructured CFD-Code. New Results in Numerical and Experimental Fluid Mechanics V 2006:430–437. https://doi.org/10.1007/978-3-540-33287-9_53Search in Google Scholar
Schlipf M., Tismer A., Riedelbauch S. On the application of hybrid meshes in hydraulic machinery CFD simulations. IOP Conference Series: Earth and Environmental Science 2016:49(6):062013. https://doi.org/10.1007/978-3-540-33287-9_53Search in Google Scholar
Kowarsch U., Hofmann T., Keßler M., Krämer E. Adding Hybrid Mesh Capability to a CFD-Solver for Helicopter Flows. High Performance Computing in Science and Engineering ´16 2016:461–471. https://doi.org/10.1007/978-3-319-47066-5_31Search in Google Scholar
NASA Prediction of Worldwide Energy Resources (POWER) Data Access Viewer [Online]. [Accessed 15.05.2025]. Available: https://power.larc.nasa.gov/data-access-viewer/Search in Google Scholar
Tominaga Y., Blocken B. Wind tunnel experiments on cross-ventilation flow of a generic building with contaminant dispersion in unsheltered and sheltered conditions. Building and Environment 2015:92:452–461. https://doi.org/10.1016/j.buildenv.2015.05.026Search in Google Scholar