This work is licensed under the Creative Commons Attribution 4.0 International License.
Slisane D., Blumberga D. Assessment of Roadside Particulate Emission Mitigation Possibilities. Environmental and Climate Technologies 2013:12(1):4–9. https://doi.org/10.2478/rtuect-2013-0009Search in Google Scholar
Blumberga A., Lauka D., Barisa A., Blumberga D. Modelling the Baltic power system till 2050. Energy Conversion and Management 2016:107:67–75. https://doi.org/10.1016/j.enconman.2015.09.005Search in Google Scholar
Skob Y., Yakovlev S., Pichugina O., Kalinichenko M., Korobchynskyi K. Mathematical Modelling of Gas Admixtures Release, Dispersion and Explosion in Open Atmosphere. CEUR Workshop Proceedings 2023:3641:168–181. https://ceur-ws.org/Vol-3641/paper15.pdfSearch in Google Scholar
Skob Y., Yakovlev S., Pichugina O., Kalinichenko M., Kartashov O. Numerical Evaluation of Harmful Consequences after Accidental Explosion at a Hydrogen Filling Station. Environmental and Climate Technologies 2024:28(1):181–194. https://doi.org/10.2478/rtuect-2024-0015Search in Google Scholar
Sun B., Loughnan T. Consequence analysis of vapour cloud explosion from the release of high-pressure hydrogen storage. International Journal of Hydrogen Energy 2024:80:1137–1150. https://doi.org/10.1016/j.ijhydene.2024.07.207Search in Google Scholar
Skob Y., Yakovlev S., Pichugina O., Kalinichenko M., Korobchynskyi K., Hulianytskyi A. Numerical Evaluation of Wind Speed Influence on Accident Toxic Spill Consequences Scales. Environmental and Climate Technologies 2023:27:450–463. https://doi.org/10.2478/rtuect-2023-0033Search in Google Scholar
Skob Y., Ugryumov M., Granovskiy E. Numerical Evaluation of Probability of Harmful Impact Caused by Toxic Spill Emergencies. Environmental and Climate Technologies 2019:23(3):1–14. https://doi.org/10.2478/rtuect-2019-0075Search in Google Scholar
Thomas G.O. Some observations on explosion development in process pipelines and implications for the selection and testing of explosion protection devices. Process Safety and Environmental Protection 2008:86(3):153–162. https://doi.org/10.1016/j.psep.2007.10.017Search in Google Scholar
Li Y., Bi M., Li B., Zhou Y., Gao W. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels. Fuel 2018:233:269–282. https://doi.org/10.1016/j.fuel.2018.06.042Search in Google Scholar
Skob Y., Khimich O., Pichugina O., Hulianytskyi A., Kartashov O. Mathematical Modeling of Pressure Effects from Hydrogen Explosion. CEUR Workshop Proceedings 2024:3777:282–299.Search in Google Scholar
Zuo J., Yang R., Xie Q. Propagation Characteristics of Explosion Wave and Explosion Gas in Blast-Hole. Shock and Vibration 2023:2023(1):5054971. https://doi.org/10.1155/2023/5054971Search in Google Scholar
Kulikov S. Acceleration of chemical reactions within a shock wave front. Shock Waves 1999:9:413–417. https://doi.org/10.1007/s001930050171Search in Google Scholar
Dai J., Yang S., Yang Y., Fang Q. Research on the consequences of hydrogen leakage and explosion accidents of fuel cell vehicles in underground parking garages. International Journal of Hydrogen Energy 2024:77:1296–1306. https://doi.org/10.1016/j.ijhydene.2024.06.278Search in Google Scholar
Choi S. Y., Oh C. B., Do K. H., Choi B.-I. A Computational Study of Hydrogen Dispersion and Explosion after Large- Scale Leakage of Liquid Hydrogen. Applied Sciences 2023:13(23):12838. https://doi.org/10.3390/app132312838Search in Google Scholar
Skob Y., Yakovlev S., Korobchynskyi K., Kalinichenko M. Numerical Assessment of Terrain Relief Influence on Consequences for Humans Exposed to Gas Explosion Overpressure. Computation 2023:11(2):19. https://doi.org/10.3390/computation11020019Search in Google Scholar
Takeno K., Okabayashi K., Kouchi A., Nonaka T., Hashiguchi K., Chitose K. Dispersion and explosion field tests for 40MPa pressurized hydrogen. International Journal of Hydrogen Energy 2007:32(13):2144–2153. https://doi.org/10.1016/j.ijhydene.2007.04.018Search in Google Scholar
Tregillis I. L., Koskelo A. Analytic Solutions as a Tool for Verification and Validation of a Multiphysics Model. Journal of Verification, Validation and Uncertainty Quantification 2019:27:450–463. https://doi.org/10.1115/1.4045747Search in Google Scholar
Skob Y., Dreval Y., Vasilchenko A., Maiboroda R. Selection of Material and Thickness of the Protective Wall in the Conditions of a Hydrogen Explosion of Various Power. Key Engineering Materials 2023:952:121–129. https://doi.org/10.4028/p-ST1VeTSearch in Google Scholar
Yu C., Lin L., Li X., Yan H., Wang Y. Study on explosion forming of the liquid hydrogen spherical storage tank by GIMP simulation and experiment. International Journal of Pressure Vessels and Piping 2025:214:105426. https://doi.org/10.1016/j.ijpvp.2024.105426Search in Google Scholar
Skob Y., Ugryumov M., Dreval Y., Artemiev S. Numerical Evaluation of Safety Wall Bending Strength during Hydrogen Explosion. Materials Science Forum 2021:1038:430–436. https://doi.org/10.4028/www.scientific.net/MSF.1038.430Search in Google Scholar
Skob Y., Ugryumov M., Dreval Y. Numerical Modelling of Gas Explosion Overpressure Mitigation Effects. Materials Science Forum 2020:1006:117–122. https://doi.org/10.4028/www.scientific.net/MSF.1006.117Search in Google Scholar
Wu J., Liu J., Yan Q. Effect of shock wave on fabricated anti-blast wall and distribution law around the wall under near surface explosion. Transactions of Tianjin University 2008:14(1):514–518. https://doi.org/10.1007/s12209-008-0088-5Search in Google Scholar
Zhang L., Chen L., Fang Q., Zhang Y. Mitigation of blast loadings on structures by an anti-blast plastic water wall. Journal of Central South University 2016:23:461–469. https://doi.org/10.1007/s11771-016-3091-3Search in Google Scholar
Markiewicz T. A review of mathematical models for the atmospheric dispersion of heavy gases. Part I. A classification of models. Ecological Chemistry and Engineering S 2012:19(3):297–314. https://doi.org/10.2478/v10216-011-0022-ySearch in Google Scholar
Ozdemir Y. H., Çoşgun T. The Influence of Turbulence Models on the Numerical Modelling of a 3D Wing in Ground Effect. Avrupa Bilim Ve Teknoloji Dergisi 2022:43:86–90. https://doi.org/10.31590/ejosat.1200056Search in Google Scholar
Nazir A., Mahmood T. Analysis of flow and heat transfer of viscous fluid between contracting rotating disks. Applied Mathematical Modelling 2011:35(7):3154-3165. https://doi.org/10.1016/j.apm.2010.12.015Search in Google Scholar
Men’shikov V., Skob Y., Ugryumov M. Solution of the three-dimensional turbomachinery blade row flow field problem with allowance for viscosity effects. Fluid Dynamics 1991:26(6):889–896. https://doi.org/10.1007/BF01056792Search in Google Scholar
Skob Y., Ugryumov M., Granovskiy E. Numerical assessment of hydrogen explosion consequences in a mine tunnel. International Journal of Hydrogen Energy 2021:46(23):12361–12371. https://doi.org/10.1016/j.ijhydene.2020.09.067Search in Google Scholar
Toro E. F. Godunov Methods. Theory and Applications. Springer Nature 2001. https://doi.org/10.1007/978-1-4615-0663-8Search in Google Scholar