Open Access

Computational Estimation of Protection Wall Height Impact on Hydrogen Explosion Consequences

, , , ,  and   
Aug 16, 2025

Cite
Download Cover

Slisane D., Blumberga D. Assessment of Roadside Particulate Emission Mitigation Possibilities. Environmental and Climate Technologies 2013:12(1):4–9. https://doi.org/10.2478/rtuect-2013-0009 Search in Google Scholar

Blumberga A., Lauka D., Barisa A., Blumberga D. Modelling the Baltic power system till 2050. Energy Conversion and Management 2016:107:67–75. https://doi.org/10.1016/j.enconman.2015.09.005 Search in Google Scholar

Skob Y., Yakovlev S., Pichugina O., Kalinichenko M., Korobchynskyi K. Mathematical Modelling of Gas Admixtures Release, Dispersion and Explosion in Open Atmosphere. CEUR Workshop Proceedings 2023:3641:168–181. https://ceur-ws.org/Vol-3641/paper15.pdf Search in Google Scholar

Skob Y., Yakovlev S., Pichugina O., Kalinichenko M., Kartashov O. Numerical Evaluation of Harmful Consequences after Accidental Explosion at a Hydrogen Filling Station. Environmental and Climate Technologies 2024:28(1):181–194. https://doi.org/10.2478/rtuect-2024-0015 Search in Google Scholar

Sun B., Loughnan T. Consequence analysis of vapour cloud explosion from the release of high-pressure hydrogen storage. International Journal of Hydrogen Energy 2024:80:1137–1150. https://doi.org/10.1016/j.ijhydene.2024.07.207 Search in Google Scholar

Skob Y., Yakovlev S., Pichugina O., Kalinichenko M., Korobchynskyi K., Hulianytskyi A. Numerical Evaluation of Wind Speed Influence on Accident Toxic Spill Consequences Scales. Environmental and Climate Technologies 2023:27:450–463. https://doi.org/10.2478/rtuect-2023-0033 Search in Google Scholar

Skob Y., Ugryumov M., Granovskiy E. Numerical Evaluation of Probability of Harmful Impact Caused by Toxic Spill Emergencies. Environmental and Climate Technologies 2019:23(3):1–14. https://doi.org/10.2478/rtuect-2019-0075 Search in Google Scholar

Thomas G.O. Some observations on explosion development in process pipelines and implications for the selection and testing of explosion protection devices. Process Safety and Environmental Protection 2008:86(3):153–162. https://doi.org/10.1016/j.psep.2007.10.017 Search in Google Scholar

Li Y., Bi M., Li B., Zhou Y., Gao W. Effects of hydrogen and initial pressure on flame characteristics and explosion pressure of methane/hydrogen fuels. Fuel 2018:233:269–282. https://doi.org/10.1016/j.fuel.2018.06.042 Search in Google Scholar

Skob Y., Khimich O., Pichugina O., Hulianytskyi A., Kartashov O. Mathematical Modeling of Pressure Effects from Hydrogen Explosion. CEUR Workshop Proceedings 2024:3777:282–299. Search in Google Scholar

Zuo J., Yang R., Xie Q. Propagation Characteristics of Explosion Wave and Explosion Gas in Blast-Hole. Shock and Vibration 2023:2023(1):5054971. https://doi.org/10.1155/2023/5054971 Search in Google Scholar

Kulikov S. Acceleration of chemical reactions within a shock wave front. Shock Waves 1999:9:413–417. https://doi.org/10.1007/s001930050171 Search in Google Scholar

Dai J., Yang S., Yang Y., Fang Q. Research on the consequences of hydrogen leakage and explosion accidents of fuel cell vehicles in underground parking garages. International Journal of Hydrogen Energy 2024:77:1296–1306. https://doi.org/10.1016/j.ijhydene.2024.06.278 Search in Google Scholar

Choi S. Y., Oh C. B., Do K. H., Choi B.-I. A Computational Study of Hydrogen Dispersion and Explosion after Large- Scale Leakage of Liquid Hydrogen. Applied Sciences 2023:13(23):12838. https://doi.org/10.3390/app132312838 Search in Google Scholar

Skob Y., Yakovlev S., Korobchynskyi K., Kalinichenko M. Numerical Assessment of Terrain Relief Influence on Consequences for Humans Exposed to Gas Explosion Overpressure. Computation 2023:11(2):19. https://doi.org/10.3390/computation11020019 Search in Google Scholar

Takeno K., Okabayashi K., Kouchi A., Nonaka T., Hashiguchi K., Chitose K. Dispersion and explosion field tests for 40MPa pressurized hydrogen. International Journal of Hydrogen Energy 2007:32(13):2144–2153. https://doi.org/10.1016/j.ijhydene.2007.04.018 Search in Google Scholar

Tregillis I. L., Koskelo A. Analytic Solutions as a Tool for Verification and Validation of a Multiphysics Model. Journal of Verification, Validation and Uncertainty Quantification 2019:27:450–463. https://doi.org/10.1115/1.4045747 Search in Google Scholar

Skob Y., Dreval Y., Vasilchenko A., Maiboroda R. Selection of Material and Thickness of the Protective Wall in the Conditions of a Hydrogen Explosion of Various Power. Key Engineering Materials 2023:952:121–129. https://doi.org/10.4028/p-ST1VeT Search in Google Scholar

Yu C., Lin L., Li X., Yan H., Wang Y. Study on explosion forming of the liquid hydrogen spherical storage tank by GIMP simulation and experiment. International Journal of Pressure Vessels and Piping 2025:214:105426. https://doi.org/10.1016/j.ijpvp.2024.105426 Search in Google Scholar

Skob Y., Ugryumov M., Dreval Y., Artemiev S. Numerical Evaluation of Safety Wall Bending Strength during Hydrogen Explosion. Materials Science Forum 2021:1038:430–436. https://doi.org/10.4028/www.scientific.net/MSF.1038.430 Search in Google Scholar

Skob Y., Ugryumov M., Dreval Y. Numerical Modelling of Gas Explosion Overpressure Mitigation Effects. Materials Science Forum 2020:1006:117–122. https://doi.org/10.4028/www.scientific.net/MSF.1006.117 Search in Google Scholar

Wu J., Liu J., Yan Q. Effect of shock wave on fabricated anti-blast wall and distribution law around the wall under near surface explosion. Transactions of Tianjin University 2008:14(1):514–518. https://doi.org/10.1007/s12209-008-0088-5 Search in Google Scholar

Zhang L., Chen L., Fang Q., Zhang Y. Mitigation of blast loadings on structures by an anti-blast plastic water wall. Journal of Central South University 2016:23:461–469. https://doi.org/10.1007/s11771-016-3091-3 Search in Google Scholar

Markiewicz T. A review of mathematical models for the atmospheric dispersion of heavy gases. Part I. A classification of models. Ecological Chemistry and Engineering S 2012:19(3):297–314. https://doi.org/10.2478/v10216-011-0022-y Search in Google Scholar

Ozdemir Y. H., Çoşgun T. The Influence of Turbulence Models on the Numerical Modelling of a 3D Wing in Ground Effect. Avrupa Bilim Ve Teknoloji Dergisi 2022:43:86–90. https://doi.org/10.31590/ejosat.1200056 Search in Google Scholar

Nazir A., Mahmood T. Analysis of flow and heat transfer of viscous fluid between contracting rotating disks. Applied Mathematical Modelling 2011:35(7):3154-3165. https://doi.org/10.1016/j.apm.2010.12.015 Search in Google Scholar

Men’shikov V., Skob Y., Ugryumov M. Solution of the three-dimensional turbomachinery blade row flow field problem with allowance for viscosity effects. Fluid Dynamics 1991:26(6):889–896. https://doi.org/10.1007/BF01056792 Search in Google Scholar

Skob Y., Ugryumov M., Granovskiy E. Numerical assessment of hydrogen explosion consequences in a mine tunnel. International Journal of Hydrogen Energy 2021:46(23):12361–12371. https://doi.org/10.1016/j.ijhydene.2020.09.067 Search in Google Scholar

Toro E. F. Godunov Methods. Theory and Applications. Springer Nature 2001. https://doi.org/10.1007/978-1-4615-0663-8 Search in Google Scholar

Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Life Sciences, other