This work is licensed under the Creative Commons Attribution 4.0 International License.
Directive 2018/2002/EU of the European Parliament and of the Council of 11 December 2018 amending Directive 2012/27/EU on energy efficiency. Official Journal of the European Union 2018: L 328/210.Search in Google Scholar
Farid M. M., Khudhair A. M., Razack S. A. K., Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Conversion and Management 2004:45(9–10):1597–1615. https://doi.org/10.1016/j.enconman.2003.09.015Search in Google Scholar
Tyagi V. V., Buddhi D. PCM thermal storage in buildings: A state of art. Renewable and Sustainable Energy Reviews 2007:11(6):1146–1166. https://doi.org/10.1016/j.rser.2005.10.002Search in Google Scholar
Rucevskis S., Akishin P., Korjakins A. Performance Evaluation of an Active PCM Thermal Energy Storage System for Space Cooling in Residential Buildings. Environmental and Climate Technologies 2019:23(2):74–89. https://doi.org/10.2478/rtuect-2019-0056Search in Google Scholar
Sharma A., Tyagi V. V., Chen C. R., Buddhi D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews 2009:13(2):318–345. https://doi.org/10.1016/j.rser.2007.10.005Search in Google Scholar
Khodadadi J. M., Hosseinizadeh S. F. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. International Communications in Heat and Mass Transfer 2007:34(5):534–543. https://doi.org/10.1016/j.icheatmasstransfer.2007.02.005Search in Google Scholar
Elbahjaoui R., Qarnia H. El. Thermal analysis of nanoparticle-enhanced phase change material solidification in a rectangular latent heat storage unit including natural convection. Energy and Buildings 2017:153:1–17. https://doi.org/10.1016/j.enbuild.2017.08.003Search in Google Scholar
Zhou D., Zhao C. Y., Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Applied Energy 2012:92:593–605. https://doi.org/10.1016/j.apenergy.2011.08.025Search in Google Scholar
Directive 2018/844/EU of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. Official Journal of the European Union 2018:L156/75 [Online]. [Accessed 12.11.2021]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32018L0844&from=ENSearch in Google Scholar
Ma Z., Lin W., Sohel M. I. Nano-enhanced phase change materials for improved building performance. Renewable and Sustainable Energy Reviews 2016:58:1256–1268. https://doi.org/10.1016/j.rser.2015.12.234Search in Google Scholar
Nematpour Keshteli A., Sheikholeslami M. Nanoparticle enhanced PCM applications for intensification of thermal performance in building: A review. Journal of Molecular Liquids 2019:274:516–533. https://doi.org/10.1016/j.molliq.2018.10.151Search in Google Scholar
Page M. J., McKenzie J. E., Bossuyt P. M., Boutron I., Hoffmann T. C., Mulrow C. D., Shamseer L., Tetzlaff J. M., Akl E. A., Brennan S. E., Chou R., Glanville J., Grimshaw J. M., Hróbjartsson A., Lalu M. M., Li T., Loder E. W., Mayo-Wilson E., McDonald S., McGuinness L. A., Stewart L. A., Thomas J., Tricco A C., Welch V. A., Whiting P., Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ 2021:372. https://doi.org/10.1136/bmj.n71Search in Google Scholar
Zhang H., Zou Y., Sun Y., Sun L., Xu F., Zhang J., Zhou H. A novel thermal-insulating film incorporating microencapsulated phase-change materials for temperature regulation and nano-TiO2 for UV-blocking. Solar Energy Materials and Solar Cells 2015:137:210–218. https://doi.org/10.1016/j.solmat.2015.02.018Search in Google Scholar
Khadiran T., Hussein M. Z., Zainal Z., Rusli R. Shape-stabilised n-octadecane/activated carbon nanocomposite phase change material for thermal energy storage. Journal of the Taiwan Institute of Chemical Engineers 2015:55:189–197. https://doi.org/10.1016/j.jtice.2015.03.028Search in Google Scholar
Sathishkumar A., Kathirkaman M. D., Ponsankar S., Balasuthagar C. Experimental investigation on solidification behaviour of water base nanofluid PCM for building cooling applications. Indian Journal of Science and Technology 2016:9(39):1–7. https://doi.org/10.17485/ijst/2016/v9i39/94966Search in Google Scholar
Yang D., Peng F., Zhang H., Guo H., Xiong L., Wang C., Shi S., Chen X. Preparation of palygorskite paraffin nanocomposite suitable for thermal energy storage. Applied Clay Science 2016:126:190–196. https://doi.org/10.1016/j.clay.2016.03.014Search in Google Scholar
Ma Z., W Lin., Sohel M. I. Nano-enhanced phase change materials for improved building performance. Renewable and Sustainable Energy Reviews 2016:58:1256–1268. https://doi.org/10.1016/j.rser.2015.12.234Search in Google Scholar
Anghel E. M., Pavel P. M., Constantinescu M., Petrescu S., Atkinson I., Buixaderas E. Thermal transfer performance of a spherical encapsulated PEG 6000-based composite for thermal energy storage. Applied Energy 2017:208:1222–1231. https://doi.org/10.1016/j.apenergy.2017.09.031Search in Google Scholar
Sharma S., Micheli L., Chang W., Tahir A. A., Reddy K. S., Mallick T. K. Nano-enhanced Phase Change Material for thermal management of BICPV. Applied Energy 2017:208:719–733. https://doi.org/10.1016/j.apenergy.2017.09.076Search in Google Scholar
Suresh Kumar K. R., Parameshwaran R., Kalaiselvam S. Preparation and characterization of hybrid nanocomposite embedded organic methyl ester as phase change material. Solar Energy Materials and Solar Cells 2017:171:148–160. https://doi.org/10.1016/j.solmat.2017.06.031Search in Google Scholar
Li Y., Yu S., Chen P., Rojas R., Hajian A., Berglund L. Cellulose nanofibers enable paraffin encapsulation and the formation of stable thermal regulation nanocomposites. Nano Energy 2017:34:541–548. https://doi.org/10.1016/j.nanoen.2017.03.010Search in Google Scholar
Cao R.-R., Li X., Chen S., Yuan H.-R., Zhang X.-X. Fabrication and characterization of novel shape-stabilized synergistic phase change materials based on PHDA/GO composites. Energy 2017:138:157–166. https://doi.org/10.1016/j.energy.2017.07.049Search in Google Scholar
Konuklu Y., Ersoy O. Fabrication and characterization of form-stable phase change material/xonotlite microcomposites. Solar Energy Materials and Solar Cells 2017:168:130–135. https://doi.org/10.1016/j.solmat.2017.04.019Search in Google Scholar
Barreneche C., Mandragon R., Ventura-Espinosa D., Mata J., Cabeza L. F., Inés Fernández A., Enrique Julia J. Influence of nanoparticle morphology and its dispersion ability regarding thermal properties of water used as phase change material. Applied Thermal Engineering 2018:128:121–126. https://doi.org/10.1016/j.applthermaleng.2017.09.014Search in Google Scholar
Liu L., Zheng K., Yan Y., Cai Z., Lin S., Hu X. Graphene Aerogels Enhanced Phase Change Materials prepared by one-pot method with high thermal conductivity and large latent energy storage. Solar Energy Materials and Solar Cells 2018:185:487–493. https://doi.org/10.1016/j.solmat.2018.06.005Search in Google Scholar
Jiang J., Zheng Q., Yan Y., Guo D., Wang F., Wu S., Sun W. Design of a novel nanocomposite with C-S-H@LA for thermal energy storage: A theoretical and experimental study. Applied Energy 2018:220:395–407. https://doi.org/10.1016/j.apenergy.2018.03.134Search in Google Scholar
Nada S. A., El-Nagar D. H. Possibility of using PCMs in temperature control and performance enhancements of free stand and building integrated PV modules. Renewable Energy 2018:127:630–641. https://doi.org/10.1016/j.renene.2018.05.010Search in Google Scholar
Dadvand A., Boukani N. H., Dawoodian M. Numerical simulation of the melting of a NePCM due to a heated thin plate with different positions in a square enclosure. Thermal Science and Engineering Progress 2018:7:248–266. https://doi.org/10.1016/j.tsep.2018.06.013Search in Google Scholar
Shah K. W., Lu Y. Morphology, large scale synthesis and building applications of copper nanomaterials. Construction and Building Materials 2018:180:544–578. https://doi.org/10.1016/j.conbuildmat.2018.05.159Search in Google Scholar
Barreneche C., Martin M., Calvo-de la Rosa J., Majo M., Fernandez A. I. Own-Synthetize Nanoparticles to Develop Nano-Enhanced Phase Change Materials (NEPCM) to Improve the Energy Efficiency in Buildings. Molecules 2019:24(7):1232. https://doi.org/10.3390/molecules24071232Search in Google Scholar
Martin M., Villalba A., Ines Fernandez A., Barrenechea C. Development of new nano-enhanced phase change materials (NEPCM) to improve energy efficiency in buildings: Lab-scale characterization. Energy and Buildings 2019:192:75–83. https://doi.org/10.1016/j.enbuild.2019.03.029Search in Google Scholar
Liu H., Niu J., Wang X., Wu D. Design and construction of mesoporous silica/n-eicosane phase-change nanocomposites for supercooling depression and heat transfer enhancement. Energy 2019:188:116075. https://doi.org/10.1016/j.energy.2019.116075Search in Google Scholar
Putra N., Rawi S., Amin M., Kusrini E., E. Kosasih A., Indra Mahlia T. M. Preparation of beeswax/multi-walled carbon nanotubes as novel shape-stable nanocomposite phase-change material for thermal energy storage. Journal of Energy Storage 2019:21:32–39. https://doi.org/10.1016/j.est.2018.11.007Search in Google Scholar
Sarabandi D., Roudini G., Barahuie F. Activated carbon derived from pine cone as a framework for the preparation of n-heptadecane nanocomposite for thermal energy storage. Journal of Energy Storage 2019:24:100795. https://doi.org/10.1016/j.est.2019.100795Search in Google Scholar
Song S., Qiu F., Zhu W., Guo Y., Zhang Y., Ju Y., Feng R., Liu Y., Chen Z., Zhou J., Xiong C., Dong L. Polyethylene glycol/halloysite@Ag nanocomposite PCM for thermal energy storage: Simultaneously high latent heat and enhanced thermal conductivity. Solar Energy Materials and Solar Cells 2019:193:237–245. https://doi.org/10.1016/j.solmat.2019.01.023Search in Google Scholar
Akhmetov B., Navarro M. E., Seitov A., Kaltayev A., Bakenov Z., Ding Y. Numerical study of integrated latent heat thermal energy storage devices using nanoparticle-enhanced phase change materials. Solar Energy 2019:194:724–741. https://doi.org/10.1016/j.solener.2019.10.015Search in Google Scholar
Zhu X., Han L., Lu Y., Wei F., Jia X. Geometry-induced thermal storage enhancement of shape-stabilized phase change materials based on oriented carbon nanotubes. Applied Energy 2019:254:113688. https://doi.org/10.1016/j.apenergy.2019.113688Search in Google Scholar
Wu S., Li T., Wu M., Xu J., Hu Y., Chao J., Yan T., Wang R. Highly thermally conductive and flexible phase change composites enabled by polymer/graphite nanoplatelet-based dual networks for efficient thermal management. Journal of Materials Chemistry A 2020:8(38):20011–20020. https://doi.org/10.1039/D0TA05904HSearch in Google Scholar
Xiao X., Jia H., Wen D., Zhao X. Thermal performance analysis of a solar energy storage unit encapsulated with HITEC salt/copper foam/nanoparticles composite. Energy 2020:192:116593. https://doi.org/10.1016/j.energy.2019.116593Search in Google Scholar
Alzoubi H. H., Albiss B. A., Abu Sini S. S. Performance of cementitious composites with nano PCMs and cellulose nano fibers. Construction and Building Materials 2020:236:117483. https://doi.org/10.1016/j.conbuildmat.2019.117483Search in Google Scholar
Pinto S. C., Silva N. H. C. S., Pinto R. J. B., Freire C. S. R., Duarte I., Vicente R., Vesenjak M., Marques P. A. A. P. Multifunctional hybrid structures made of open-cell aluminum foam impregnated with cellulose/graphene nanocomposites. Carbohydrate Polymers 2020:238:116197. https://doi.org/10.1016/j.carbpol.2020.116197Search in Google Scholar
Ranjbar S. G., Roudini G., Barahuie F. Fabrication and characterization of phase change material-SiO2 nanocomposite for thermal energy storage in buildings. Journal of Energy Storage 2020:27:101168. https://doi.org/10.1016/j.est.2019.101168Search in Google Scholar
Kant K., Anand A., Shukla A., Sharma A. Heat transfer study of building integrated photovoltaic (BIPV) with nano-enhanced phase change materials. Journal of Energy Storage 2020:30:101563. https://doi.org/10.1016/j.est.2020.101563Search in Google Scholar
John M. R. W., Subramanian L. R. G. Thermodynamic analysis of a compression ignition engine with latent heat storage unit. Applied Thermal Engineering 2020:167:114697. https://doi.org/10.1016/j.applthermaleng.2019.114697Search in Google Scholar
Zhang M., Wang C., Luo A., Liu Z., Zhang X. Molecular dynamics simulation on thermophysics of paraffin/EVA/graphene nanocomposites as phase change materials. Applied Thermal Engineering 2020:166:114639. https://doi.org/10.1016/j.applthermaleng.2019.114639Search in Google Scholar
Sheikholeslami M., Jafaryar M., Shafee A., Babazadeh H. Acceleration of discharge process of clean energy storage unit with insertion of porous foam considering nanoparticle enhanced paraffin. Journal of Cleaner Production 2020:262:121206. https://doi.org/10.1016/j.jclepro.2020.121206Search in Google Scholar
Parameshwaran R., Kumar G. N., Ram V. V. Experimental analysis of hybrid nanocomposite-phase change material embedded cement mortar for thermal energy storage. Journal of Building Engineering 2020:30:101297. https://doi.org/10.1016/j.jobe.2020.101297Search in Google Scholar
Ashok V., Geetha N. B., Rajkumar S., Pauline T. Experimental Investigations for Thermal Energy Management by Encapsulation of Nano -Enhanced Bio Phase Change Material in buildings. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 2022:44(2):4165–4183. https://doi.org/10.1080/15567036.2021.1967517Search in Google Scholar
Al-Mahmodi A. F., Afolabi L. O., Awadh M. G., Batcha M. F. M. Zamani N., Isa N. M., Didane D. H. Thermal Behaviour of Nanocomposite Phase Change Material for Solar Thermal Applications. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 2021:88(2):131–146. https://doi.org/10.37934/arfmts.88.2.133146Search in Google Scholar
Zhang T., Zhang T., Zhang J., Zhang D., Guo P., Li H., Li C., Wang Y. Design of stearic acid/graphene oxide-attapulgite aerogel shape-stabilized phase change materials with excellent thermophysical properties. Renewable Energy 2021:165(1):504–513. https://doi.org/10.1016/j.renene.2020.11.030Search in Google Scholar
Sarrafha H., Kasaeian A., Jahangir M. H., Taylor R. A. Transient thermal response of multi-walled carbon nanotube phase change materials in building walls. Energy 2021:224:120120. https://doi.org/10.1016/j.energy.2021.120120Search in Google Scholar
Habib N. A., Ali A. J., Chaichan M. T., Kareem M. Carbon nanotubes/paraffin wax nanocomposite for improving the performance of a solar air heating system. Thermal Science and Engineering Progress 2021:23:100877. https://doi.org/10.1016/j.tsep.2021.100877Search in Google Scholar
Musavi S. M., Barahuie F., Irani M., A. Safamanesh, Malekpour A. Enhanced properties of phase change material - SiO2-graphene nanocomposite for developing structural–functional integrated cement for solar energy absorption and storage. Renewable Energy 2021:174:918–927. https://doi.org/10.1016/j.renene.2021.04.140Search in Google Scholar
Bahrami L., Kasaeian A., Pourfayaz F., Ghafarian S. Modeling of the effect of nano-enhanced phase change material on the performance of a large-scale wallboard. Journal of Thermal Engineering 2021:7(8):1857–1871. https://doi.org/10.18186/thermal.1051259Search in Google Scholar
Ma M., Xie M., Ai Q. Numerical simulation on photo-thermal properties of double glazing unit filled with TiN-Al2O3 binary nanoparticles enhanced phase change material. Sustainable Energy Technologies and Assessments 2021:48:101676. https://doi.org/10.1016/j.seta.2021.101676Search in Google Scholar
Yang R., Li D., Lopez Salazar S., Rao Z., Arici M., Wei W. Photothermal properties and photothermal conversion performance of nano-enhanced paraffin as a phase change thermal energy storage material. Solar Energy Materials and Solar Cells 2021:219:110792. https://doi.org/10.1016/j.solmat.2020.110792Search in Google Scholar
Ma K., Zhang X., Ji J., Han L. Development, characterization and modification of mannitol-water based nanocomposite phase change materials for cold storage. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022:650:129571. https://doi.org/10.1016/j.colsurfa.2022.129571Search in Google Scholar
Karthikeyan K., Mariappan V., Kalidoss P., Anish R., Sarafoji P., Reddy J. V., Satpathy T. K. Preparation and thermal characterization of capric-myristic acid binary eutectic mixture with silver–antimony tin oxide and silver-graphene nanoplatelets hybrid-nanoparticles as phase change material for building applications. Materials Letters 2022:328:133086. https://doi.org/10.1016/j.matlet.2022.133086Search in Google Scholar
Vu T. D., Xie H., Wang S., Hu J., Zeng X., Long Y. Durable vanadium dioxide with 33-year service life for smart windows applications. Materials Today Energy 2022:26:100978. https://doi.org/10.1016/j.mtener.2022.100978Search in Google Scholar
Salgado-Pizarro R., Martín M., Svobodova-Sedlackova A., Calderón A., Haurie L., Fernández A. I., Barreneche C. Manufacturing of nano-enhanced shape stabilized phase change materials with montmorillonite by Banbury oval rotor mixer for buildings applications. Journal of Energy Storage 2022:55(A):105289. https://doi.org/10.1016/j.est.2022.105289Search in Google Scholar
Tuncbilek E., Arici M., Krajcik M., Li Y., Jurcevic M., Nizetic S. Impact of nano-enhanced phase change material on thermal performance of building envelope and energy consumption. International Journal of Energy Research 2022:46(14):20249–20264. https://doi.org/10.1002/er.8200Search in Google Scholar
Thangapandian E., Palanisamy P. An experimental and numerical study to enhance the thermal characteristics of LA/CuO/Al2O3 nanocomposites as a phase change material for building cooling applications. Polymer Composites 2022:43(8):5426–5441. https://doi.org/10.1002/pc.26845Search in Google Scholar
Ajdari H., Ameri A. Performance assessment of an inclined stepped solar still integrated with PCM and CuO/GO nanocomposite as a nanofluid. Journal of Building Engineering 2022:49:104090. https://doi.org/10.1016/j.jobe.2022.104090Search in Google Scholar
Anand A., Srivastava V., Singh S., Shukla A., Choubey A. K., Sharma A. Development of nano-enhanced phase change materials using manganese dioxide nanoparticles obtained through green synthesis. Energy Storage 2022:4(5):e344. https://doi.org/10.1002/est2.344Search in Google Scholar
Shen H., Liu H., Wang X. Surface construction of catalase-immobilized Au/PEDOT nanocomposite on phase-change microcapsules for enhancing electrochemical biosensing detection of hydrogen peroxide. Applied Surface Science 2023:612:155816. https://doi.org/10.1016/j.apsusc.2022.155816Search in Google Scholar
Maleki M., Sharifi N., Karimian H., Ahmadi R., Aminizadeh P., Sanadgol R., Valanezhad A. Electro-driven carbon foam/PCMs nanocomposites for sustainable energy management. Journal of Energy Storage 2023:67:107599. https://doi.org/10.1016/j.est.2023.107599Search in Google Scholar
Amirkhani Khabisi M., Roudini G., Barahuie F., Sheybani H., Ibrar M. Evaluation of phase change material-graphene nanocomposite for thermal regulation enhancement in buildings. Heliyon 2023:9(11):e21699. https://doi.org/10.1016/j.heliyon.2023.e21699Search in Google Scholar
Yang X., Li D., Yang R., Ma Y., Tong X., Wu Y., Arıcı M. Comprehensive performance evaluation of double-glazed windows containing hybrid nanoparticle-enhanced phase change material. Applied Thermal Engineering 2023:223:119976. https://doi.org/10.1016/j.applthermaleng.2023.119976Search in Google Scholar
Atinafu D. G., Yun B. Y., Wi S., Chang S. J., Kim S. Unveiling sustainable nano-enabled phase change materials for high thermal stability and energy storage capacity. Journal of Energy Storage 2023:60:106650. https://doi.org/10.1016/j.est.2023.106650Search in Google Scholar
Naveen Kumar G., Vinayaka Ram V., Parameshwaran R. Thermal and structural properties of cement mortar embedded with hybrid nanocomposite based phase change nanocapsules for building application. Construction and Building Materials 2023:385:131481. https://doi.org/10.1016/j.conbuildmat.2023.131481Search in Google Scholar
Daneshazarian R., Eslami R., Azizi N., Zarrin H., Berardi U. Performance evaluation of a novel nano-enhanced phase change material for thermal energy storage applications. Journal of Energy Storage 2023:74(A):109376. https://doi.org/10.1016/j.est.2023.109376Search in Google Scholar
Paul J., Samykano M., Pandey A. K., Kadirgama K., Tyagi V. V. Nano Engineered Paraffin-Based Phase Change Material for Building Thermal Management. Buildings 2023:13(4):900. https://doi.org/10.3390/buildings13040900Search in Google Scholar
Yang R., Li D., Arıcı M., Salazar S. L., Wu Y., Liu C., Yıldız Ç. Spectrally selective nanoparticle-enhanced phase change materials: A study on data-driven optical/thermal properties and application of energy-saving glazing under different climatic conditions. Renewable and Sustainable Energy Reviews 2023:186:113646. https://doi.org/10.1016/j.rser.2023.113646Search in Google Scholar
Reddy B. D., Rahul S. V. S., Harish R. Impact of fin number and nanoparticle size on molten salt NanoPCM melting in finned annular space. Journal of Energy Storage 2023:72(E):108705. https://doi.org/10.1016/j.est.2023.108705Search in Google Scholar
Gür M., Öztop H. F., Selimefendigil F. Analysis of solar underfloor heating system assisted with nano enhanced phase change material for nearly zero energy buildings approach. Renewable Energy 2023:218:119265. https://doi.org/10.1016/j.renene.2023.119265Search in Google Scholar
Daneshazarian R., Berardi U. Nano-enhanced thermal energy storage coupled to a hybrid renewable system for a high-rise zero emission building. Energy Conversion and Management 2023:291:117301. https://doi.org/10.1016/j.enconman.2023.117301Search in Google Scholar
Zhao Y., Huang Y., Wang N., Zhang Y., Cheng C., Zhang H., Gao D. Optimization of a phase change material enhanced low-concentration photovoltaic/thermal module. Energy and Buildings 2023:287:112987. https://doi.org/10.1016/j.enbuild.2023.112987Search in Google Scholar
Dastmalchi M., Boyaghchi F. A. Particle swarm optimization of phase change and indoor setpoint temperatures in a phase change material-air heat exchanger for free cooling of two climate zones. Energy Storage 2023:5(5):e441. https://doi.org/10.1002/est2.441Search in Google Scholar
Mishra S. K., Gupta M. K., Kumar R., Sharma A., Yadav A. S. Effect of Nanoparticles Enhanced Phase Change Materials in the Charging-Discharging Performance of Thermal Storage System. International Journal of Vehicle Structures and Systems 2023:15(6):779–785. https://doi.org/10.4273/ijvss.15.6.08Search in Google Scholar
Hayat M. A., Chen Y., Yang Y., Li L., Bevilacqua M. Enhancing thermal energy storage in buildings with novel functionalised MWCNTs-enhanced phase change materials: Towards efficient and stable solutions. Thermal Science and Engineering Progress 2024:47:102313. https://doi.org/10.1016/j.tsep.2023.102313Search in Google Scholar
Yasien A. M., Bassuoni M. T., Ghazy A. Phase change material nanocomposites as an internal curing aid for nano-modified concrete under cold weather. Construction and Building Materials 2024:411:134490. https://doi.org/10.1016/j.conbuildmat.2023.134490Search in Google Scholar
Rajamony R. K., Sofiah A. G. N., Kalidasan B., Samykano M., Pandey A. K., Suraparaju S. K., Paw J. K. S., Paranthaman V., Fouad Y., Noor M. M., Kalam M. A. Experimental investigation of tailoring functionalized carbon-based nano additives infused phase change material for enhanced thermal energy storage. Process Safety and Environmental Protection 2024:190:944–961. https://doi.org/10.1016/j.psep.2024.07.093Search in Google Scholar
Xiong Y., Li Y., Hu Y., Fu M., Li L., Huang Y., Cheng X. Preparation and characteristics of CuS-CNTs modified PVDF-based flexible composite phase change films. Journal of Energy Storage 2024:104:114421. https://doi.org/10.1016/j.est.2024.114421Search in Google Scholar
Rajamony R. K., Paw J. K. S., Pandey A. K., Sofiah A. G. N., Yadav A., Tak Y. C., Kiong T. S., Mohanty A., Soudagar M. E. M., Fouad Y. Eco-friendly approach to thermal energy storage: Assessing the thermal and chemical properties of coconut biochar-enhanced phase change material. Energy Storage 2024:6(5):e679. https://doi.org/10.1002/est2.679Search in Google Scholar
C. Gioti, Vasilopoulos K. C., Baikousi M., Salmas C. E., Ntaflos A., Paipetis A. S., Viskadourakis Z., Ikram R., Agathopoulos S., Kenanakis G., Karakassides M. A. Enhanced Gypsum Boards with Activated Carbon Composites and Phase Change Materials for Advanced Thermal Energy Storage and Electromagnetic Interference Shielding Properties. Micro 2024:4(1):61–79. https://doi.org/10.3390/micro4010005Search in Google Scholar
Jacob J., Paul J., Selvaraj J., Rahim N. A., Pandey A. K., Ahmad M. S., Kadirgama K. Investigating Long-Term Durability of Nanofillers (TiO2) Embedded Organic Eutectic Phase Change Composites. Energy Technology 2024:13(7):2400335. https://doi.org/10.1002/ente.202400335Search in Google Scholar
Karaağaç M. O. Performance evaluation of nano-enhanced phase change materials for thermal energy storage: An experimental study. Case Studies in Thermal Engineering 2024:64:105412. https://doi.org/10.1016/j.csite.2024.105412Search in Google Scholar
Li D., Fu Q., Yang R., Zhang C., Duan Y., Yuan Z. Thermal performance of glazing envelopes embedded with nano- enhanced paraffin: a comparative study. Construction and Building Materials 2024:442:137612. https://doi.org/10.1016/j.conbuildmat.2024.137612Search in Google Scholar
Tan Q., Liu H., Shi Y., Zhang M., Yu B., Zhang Y. Lauric acid/stearic acid/nano-particles composite phase change materials for energy storage in buildings. Journal of Energy Storage 2024:76:109664. https://doi.org/10.1016/j.est.2023.109664Search in Google Scholar
Pandey A. K., Kalidasan B., Said Z., Mishra Y. K., Hwang J.-Y. Graphene nanoplatelets-infused binary eutectic phase change materials for enhanced thermal energy storage. Materials Today Sustainability 2024:27:100934. https://doi.org/10.1016/j.mtsust.2024.100934Search in Google Scholar
Sun Y., He F., Wang J., Wang L., Fu B., Tang W. Preparation and characterization of fatty acid ternary eutectic mixture/Nano-SiO2 composite phase change material for building applications. Applied Energy 2024:376(A):124221. https://doi.org/10.1016/j.apenergy.2024.124221Search in Google Scholar
Wang J.-X., Mao Y., Miljkovic N. Nano-Enhanced Graphite/Phase Change Material/Graphene Composite for Sustainable and Efficient Passive Thermal Management. Advanced Science 2024:11(38):2402190. https://doi.org/10.1002/advs.202402190Search in Google Scholar
Yin S., Lu M., Liu C., Tong L., Wang L., Ding Y. Fabrication and thermal properties of capric–stearic acid eutectic/nano-SiO2 phase change material with expanded graphite and CuO for thermal energy storage. Journal of Energy Storage 2024:77:110025. https://doi.org/10.1016/j.est.2023.110025Search in Google Scholar
Yadav A., Samykano M., Pandey A. K., Kareri T., Kalidasan B. Optimizing thermal properties and heat transfer in 3D biochar-embedded organic phase change materials for thermal energy storage. Materials Today Communications 2024:38:108114. https://doi.org/10.1016/j.mtcomm.2024.108114Search in Google Scholar
Ismail M., Alkhazaleh A. H., Sirhan A., Ali M., Ali A. M., Masri J. Development and characterisation of myristic acid-paraffin wax, silica fume and zinc oxide cementitious composites for thermal control in buildings. Case Studies in Thermal Engineering 2024:63:105283. https://doi.org/10.1016/j.csite.2024.105283Search in Google Scholar
PangY., Sun J., Zhang W., Lai C., Liu Y., Guo H., Zhang D. Green, recyclable and high latent heat form-stable phase change composites supported by cellulose nanofibers for thermal energy management. International Journal of Biological Macromolecules 2024:264:130633. https://doi.org/10.1016/j.ijbiomac.2024.130633Search in Google Scholar
Rolka P., Przybylinski T., Kwidzinski R., Lackowski M. Investigation of low-temperature phase change material (PCM) with nano-additives improving thermal conductivity for better thermal response of thermal energy storage. Sustainable Energy Technologies and Assessments 2024:66:103821. https://doi.org/10.1016/j.seta.2024.103821Search in Google Scholar
Paul J., Pandey A. K. Kadirgama K., Samykano M., Jacob J., Selvaraj J., Saidur R. Optimizing graphene-silver embedded phase change composite synthesis using design of experiments. Journal of Energy Storage 2024:82:110523. https://doi.org/10.1016/j.est.2024.110523Search in Google Scholar
Mahdi J. M., Ali-Najjar H. M. T., Togun H., Biswas N., Boujelbene M., Alshammari S., Talebizadehsardari P. Year- round performance evaluation of photovoltaic-thermal collector with nano-modified phase-change material for building application in an arid desert climate zone. Energy and Buildings 2024:320:114597. https://doi.org/10.1016/j.enbuild.2024.114597Search in Google Scholar
Li P., Feng D., Feng Y., Zhang X. Converting bio-waste rice into ultralight hierarchical porous carbon to pack polyethylene glycol for multifunctional applications: Experiment and molecular dynamics simulations. Composites Part A: Applied Science and Manufacturing 2024:178:107979. https://doi.org/10.1016/j.compositesa.2023.107979Search in Google Scholar
Kumar A., Gupta A., Sharma K., Singh M. Effect of graphene oxide on thermal charging and discharging behaviour of paraffin wax as nano-enhanced phase change materials. MRS Advances 2024:9(15):1213–1218. https://doi.org/10.1557/s43580-024-00895-0Search in Google Scholar
Baniasadi H., Farzan A., McCord M. R. Y., Silva P. E. S., Abdi B., Paganelli Z., Vapaavuori J., Tehrani A., Niskanen J. Photocurable cellulose-based composites with PEGylated graphene oxide for leakage-free thermal energy storage and photothermal applications. International Journal of Biological Macromolecules 2025:310:143399. https://doi.org/10.1016/j.ijbiomac.2025.143399Search in Google Scholar
Gur M., Gurgenc E., Cosanay H., Öztop H. F. Solar-assisted radiant heating system with nano-B4C enhanced PCM for nearly zero energy buildings. Case Studies in Thermal Engineering 2025:65:105544. https://doi.org/10.1016/j.csite.2024.105544Search in Google Scholar
Hu B., Guo H., Li T., Cao X., Cao M., Qi W., Cui Y., Li B. Engineering tiramisu-like phase change nanocomposite for superior thermal energy management and electromagnetic interference shielding. Journal of Materials Science & Technology 2025:206:113–124. https://doi.org/10.1016/j.jmst.2024.04.021Search in Google Scholar
Bilal A. S. S., Bilal M. M., Fatima R., Ajmal khan M., Hasnain M., Munir M. U., Bano N., Hussain I. Enhancing thermo-physical properties of paraffin wax phase change material with MXene nanoflakes for improved energy storage and heat transfer applications. Results in Engineering 2025:25:104557. https://doi.org/10.1016/j.rineng.2025.104557Search in Google Scholar
Gurgenc E., Gur M., Cosanay H., Gurgenc T., Oztop H. F. Effects of position of semi-circular body on melting of a novel B4C/RT44HC PCM nanocomposite in a closed space. Case Studies in Thermal Engineering 2025:65:105628. https://doi.org/10.1016/j.csite.2024.105628Search in Google Scholar
Abass P. J., Muthulingam S. Energy-efficient concrete roofs for buildings: Integrating macroencapsulated nano- enhanced PCMs for hot climate adaptation. Case Studies in Thermal Engineering 2025:66:105744. https://doi.org/10.1016/j.csite.2025.105744Search in Google Scholar
Aboueian J., Shahsavar A., Askarifard Jahromi H. R. Parametric assessment of a building-integrated PV/T system with a Nanofluid/NEPCM spectral splitter. Journal of Building Engineering 2025:103:112042. https://doi.org/10.1016/j.jobe.2025.112042Search in Google Scholar
Calotă R., Pop O., Croitoru C., Bode F., Berville C., Ovadiuc E. Performance analysis of solar collectors with nano- enhanced phase change materials during transitional periods between cold and warm seasons in the continental temperate climates. Journal of Energy Storage 2025:114(B):115659. https://doi.org/10.1016/j.est.2025.115659Search in Google Scholar
Shahsavar A., Aboueian J., Askarifard Jahromi H. R. Advanced building utility systems: Utilizing a thermal wheel and a photovoltaic/thermal system equipped with a nanofluid/nano-enhanced PCM-based spectral splitter. Energy and Buildings 2025:337:115669. https://doi.org/10.1016/j.enbuild.2025.115669Search in Google Scholar
Belazreg A., Qasem N. A. A., Abderrahmane A., Younis O., Guedri K. Enhanced webbed-tubes thermal storage unit for solar heaters. Results in Engineering 2025:26:104750. https://doi.org/10.1016/j.rineng.2025.104750Search in Google Scholar
Gür M., Gürgenç E., Coşanay H., Öztop H. F. Solar-assisted radiant heating system with nano-B4C enhanced PCM for nearly zero energy buildings. Case Studies in Thermal Engineering 2025:65:105544. https://doi.org/10.1016/j.csite.2024.105544Search in Google Scholar
Wilson John M. R., Ganapathy Subramanian L. R. Thermodynamic analysis of a compression ignition engine with latent heat storage unit. Applied Thermal Engineering 2020:167:114697. https://doi.org/10.1016/j.applthermaleng.2019.114697Search in Google Scholar
Tunçbilek E., Arıcı M., Krajčík M., Li Y., Jurčević M., Nižetić S. Impact of nano-enhanced phase change material on thermal performance of building envelope and energy consumption. International Journal of Energy Research 2022:46(14):20249–20264. https://doi.org/10.1002/er.8200Search in Google Scholar
Gur M., Oztop H. F., Selimefendigil F. Analysis of solar underfloor heating system assisted with nano enhanced phase change material for nearly zero energy buildings approach. Renewable Energy 2023:218:119265. https://doi.org/10.1016/j.renene.2023.119265Search in Google Scholar
Karaağaç M. O. Performance evaluation of nano-enhanced phase change materials for thermal energy storage: An experimental study. Case Studies in Thermal Engineering 2024:64:105412. https://doi.org/10.1016/j.csite.2024.105412Search in Google Scholar
Kalnæs S. E., Jelle B. P. Phase change materials and products for building applications: A state-of-the-art review and future research opportunities. Energy and Buildings 2015:94:150–176. https://doi.org/10.1016/j.enbuild.2015.02.023Search in Google Scholar
Kumar R., Mitra A., Srinivas T. Role of nano-additives in the thermal management of lithium-ion batteries: A review. Journal of Energy Storage 2022:48:104059. https://doi.org/10.1016/j.est.2022.104059Search in Google Scholar
Mitra A., Kumar R., Singh D. K., Said Z. Advances in the improvement of thermal-conductivity of phase change material-based lithium-ion battery thermal management systems: An updated review. Journal of Energy Storage 2022:53:105195. https://doi.org/10.1016/j.est.2022.105195Search in Google Scholar
GaneshKumar P., Sivalingam V., Divya S., Oh T. H., Vigneswaran V. S., Velraj R. Thermophysical exploration: State-of-the-art review on phase change materials for effective thermal management in lithium-ion battery systems. Journal of Energy Storage 2024:87:111412. https://doi.org/10.1016/j.est.2024.111412Search in Google Scholar
Ushak S., Song W., Marín P. E., Milian Y., Zhao D., Grageda M., Lin W., Chen M., Han Y. A review on phase change materials employed in Li-ion batteries for thermal management systems. Applied Materials Today 2024:37:102021. https://doi.org/10.1016/j.apmt.2023.102021Search in Google Scholar
Yaw C. T., Rajamony R. K., Bhutto Y. A., Bakthavatchalam B., Kottala R. K., Chopra K., Paw J. K. S., Doroody C., Allasi H. L., Soudagar M. E. M. Two phase heat transfer approaches for battery thermal management: Current status, challenges and future outlook. Results in Engineering 2025:27:105749. https://doi.org/10.1016/j.rineng.2025.105749Search in Google Scholar
Ma Z., Lin W., Sohel M. I. Nano-enhanced phase change materials for improved building performance. Renewable and Sustainable Energy Reviews 2016:58:1256–1268. https://doi.org/10.1016/j.rser.2015.12.234Search in Google Scholar
Sathishkumar A., Sundaram P., Cheralathan M., Kumar P. G. Effect of nano-enhanced phase change materials on performance of cool thermal energy storage system: A review. Journal of Energy Storage 2024:78:110079. https://doi.org/10.1016/j.est.2023.110079Search in Google Scholar
Sidik N. A. C., Kean T. H., Chow H. K., Rajaandra A., Rahman S., Kaur J. Performance enhancement of cold thermal energy storage system using nanofluid phase change materials: A review. International Communications in Heat and Mass Transfer 2018:94:85–95. https://doi.org/10.1016/j.icheatmasstransfer.2018.03.024Search in Google Scholar
Nemś A., Daniarta S., Nemś M., Kolasiński P., Ushak S. A review of artificial intelligence to thermal energy storage and heat transfer improvement in phase change materials. Sustainable Materials and Technologies 2025:44:e01348. https://doi.org/10.1016/j.susmat.2025.e01348Search in Google Scholar
Nagar S., Sreenivasa S. Mathematical modeling, numerical simulation and experimental validation of temperature profiles of PCMs and their applications in industry 4.0: A review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2024:238(17):8850–8876. https://doi.org/10.1177/09544062241242704Search in Google Scholar
Mohammadpour J., Lee A. Investigation of nanoparticle effects on jet impingement heat transfer: A review. Journal of Molecular Liquids 2020:316:113819. https://doi.org/10.1016/j.molliq.2020.113819Search in Google Scholar
Leong K. Y., Abdul Rahman M. R., Gurunathan B. A. Nano-enhanced phase change materials: A review of thermo- physical properties, applications and challenges. Journal of Energy Storage 2019:21:18–31. https://doi.org/10.1016/j.est.2018.11.008Search in Google Scholar
Williams J. D., Peterson G. P., Hernandez Lopez L., Sepelak V. A Review of Thermal Property Enhancements of Low-Temperature Nano-Enhanced Phase Change Materials. Nanomaterials 2021:11(10):2578. https://doi.org/10.3390/nano11102578Search in Google Scholar
Amudhalapalli G. K., Devanuri J. K. Synthesis, characterization, thermophysical properties, stability and applications of nanoparticle enhanced phase change materials – A comprehensive review. Thermal Science and Engineering Progress 2022:28:101049. https://doi.org/10.1016/j.tsep.2021.101049Search in Google Scholar
Liu Z., Huang S. M., Wang C., Zhuang Y. A review on non-Newtonian effects and structure-activity relationship of nanoparticles enhanced phase change materials in porous media. Journal of Energy Storage 2023:64:107221. https://doi.org/10.1016/j.est.2023.107221Search in Google Scholar
Han L., Zhang X., Ji J., Ma K. Research progress on the influence of nano-additives on phase change materials. Journal of Energy Storage 2022:55(D):105807. https://doi.org/10.1016/j.est.2022.105807Search in Google Scholar
Said Z., Pandey A. K., Tiwari A. K., Kalidasan B., Jamil F., Thakur A. K., Tyagi V. V., Sarı Ahmet., Ali H. M. Nano-enhanced phase change materials: Fundamentals and applications. Progress in Energy and Combustion Science 2024:104:101162. https://doi.org/10.1016/j.pecs.2024.101162Search in Google Scholar
Yadav A., Pandey A. K., Samykano M., Kalidasan B., Said Z. A review of organic phase change materials and their adaptation for thermal energy storage. International Materials Reviews 2024:69(7-8):380–446. https://doi.org/10.1177/09506608241292406Search in Google Scholar
Barthwal M., Dhar A., Powar S. Effect of Nanomaterial Inclusion in Phase Change Materials for Improving the Thermal Performance of Heat Storage: A Review. ACS Applied Energy Materials 2021:4(8):7462–7480. https://doi.org/10.1021/acsaem.1c01268Search in Google Scholar
Chalivendula S. R., Tarigonda H. Recent Advances in Organic Phase Change Materials for Thermal Energy Storage: A Review on Sustainable Development Applications. International Journal of Thermophysics 2025:46(6):1–56. https://doi.org/10.1007/s10765-025-03559-9Search in Google Scholar
Khodadadi J. M., Fan L., Babaei H. Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews 2013:24:418–444. https://doi.org/10.1016/j.rser.2013.03.031Search in Google Scholar
Abdoos B., Ghazvini M., Pourfayaz F., Ahmadi M. H., Nouralishahi A. A comprehensive review of nano-phase change materials with a focus on the effects of influential factors. Environmental Progress & Sustainable Energy 2022:41(2):e13808. https://doi.org/10.1002/ep.13808Search in Google Scholar
Yang L., Tian J., Ding Y., Alagumalai A., Selimefendigil F., Aghbashlo M., Tabatabaei M., Asirvatham L. G., Wongwise S., Sherif S. A., Michaelides E. E., Markides C. N., Mahian O.The physics of phase transition phenomena enhanced by nanoparticles. Applied Physics Reviews 2025:12(1):011307. https://doi.org/10.1063/5.0200714Search in Google Scholar
Chebli F., Mechighel F. Phase change materials: classification, use, phase transitions, and heat transfer enhancement techniques: a comprehensive review. Journal of Thermal Analysis and Calorimetry 2025:150(3):1353–1411. https://doi.org/10.1007/s10973-024-13877-zSearch in Google Scholar
Sarath K. P., Feroz Osman M., Mukhesh R., Manu K. V., Deepu M. A review of the recent advances in the heat transfer physics in latent heat storage systems. Thermal Science and Engineering Progress 2023:42:101886. https://doi.org/10.1016/j.tsep.2023.101886Search in Google Scholar
Rostami S., Afrand M., Shahsaver A., Sheikholeslami M., Kalbasi R., Aghakhani S., Shadloo M. S., Oztop H. F. A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage. Energy 2020:211:118698. https://doi.org/10.1016/j.energy.2020.118698Search in Google Scholar
Mebarek-Oudina F., Chabani I. Review on Nano Enhanced PCMs: Insight on nePCM Application in Thermal Management/Storage Systems. Energies 2023:16(3):1066. https://doi.org/10.3390/en16031066Search in Google Scholar
Tofani K., Tiari S. Nano-Enhanced Phase Change Materials in Latent Heat Thermal Energy Storage Systems: A Review. Energies 2021:14(13):3821. https://doi.org/10.3390/en14133821Search in Google Scholar
Mohammadpour J., Lee A., Timchenko V., Taylor R. Nano-Enhanced Phase Change Materials for Thermal Energy Storage: A Bibliometric Analysis. Energies 2022:15(9):3426. https://doi.org/10.3390/en15093426Search in Google Scholar
Li Z. R., Hu N., Fan L. W. Nanocomposite phase change materials for high-performance thermal energy storage: A critical review. Energy Storage Materials 2023:55:727–753. https://doi.org/10.1016/j.ensm.2022.12.037Search in Google Scholar
Aziz A., Waheed W., Mourad A., Aissa A., Younis O., Abu-Nada E., Alazzam A. Contemporary nano enhanced phase change materials: Classification and applications in thermal energy management systems. Journal of Energy Storage 2024:75:109579. https://doi.org/10.1016/j.est.2023.109579Search in Google Scholar
Tariq S. L., Ali H. M., Akram M. A., Janjua M. M., Ahmadlouydarab M. Nanoparticles enhanced phase change materials (NePCMs)-A recent review. Applied Thermal Engineering 2020:176:115305. https://doi.org/10.1016/j.applthermaleng.2020.115305Search in Google Scholar
Wong W. P., Kagalkar A., Patel R., Patel P., Dharaskar S., Walvekar R., Khalid M., Gedam V. V. Nano-enhanced phase change materials for thermal energy storage: A comprehensive review of recent advancements, applications, and future challenges. Journal of Energy Storage 2023:74(A):109265. https://doi.org/10.1016/j.est.2023.109265Search in Google Scholar
Alagumalai A., Yang L., Ding Y., Marshall J. S., Mesgarpour M., Wongwises S., Rashidi M. M., Taylor R. A., Mahian O., Sheremet M., Wang L-P., Markides C. N. Nano-engineered pathways for advanced thermal energy storage systems. Cell Reports Physical Science 2022:3(8):101007. https://doi.org/10.1016/j.xcrp.2022.101007Search in Google Scholar
Pereira J., Moita A., Moreira A. An Overview of the Nano-Enhanced Phase Change Materials for Energy Harvesting and Conversion. Molecules 2023:28(15):5763. https://doi.org/10.3390/molecules28155763Search in Google Scholar
Punniakodi B. M. S., Senthil R. A review on container geometry and orientations of phase change materials for solar thermal systems. Journal of Energy Storage 2021:36:102452. https://doi.org/10.1016/j.est.2021.102452Search in Google Scholar
Rashid F. L., Dhaidan N. S., Mahdi A. J., Azziz H. N., Parveen R., Togun H., Homod R. Z. Heat transfer enhancement of phase change materials using letters-shaped fins: A review. International Communications in Heat and Mass Transfer 2024:159(B):108096. https://doi.org/10.1016/j.icheatmasstransfer.2024.108096Search in Google Scholar
Rogowski M., Andrzejczyk R. Recent advances of selected passive heat transfer intensification methods for phase change material-based latent heat energy storage units: A review. International Communications in Heat and Mass Transfer 2023:144:106795. https://doi.org/10.1016/j.icheatmasstransfer.2023.106795Search in Google Scholar
Zarei M., Vahidhosseini S. M., Rashidi S., Rafee R., Yan W. M. Review on the efficiency enhancement of solar- assisted heat pumps using nano-enhanced phase change materials (NEPCM). Journal of Energy Storage 2025:114(B):115804. https://doi.org/10.1016/j.est.2025.115804Search in Google Scholar
Katoch A., Abdul Razak F., Suresh A., Bibin B. S., Gundabattini E., Yusoff Mohd. Z. Performance of Nanoparticles in Refrigeration Systems: A Review. Journal of Nanofluids 2022:11(4):469–486. https://doi.org/10.1166/jon.2022.1809Search in Google Scholar
Dhaidan N. S., Kokz S. A., Rashid F. L., Hussein A. K., Younis O., Al-Mousawi F. N. Review of solidification of phase change materials dispersed with nanoparticles in different containers. Journal of Energy Storage 2022:51:104271. https://doi.org/10.1016/j.est.2022.104271Search in Google Scholar
Rashid F. L., Mohammed H. I., Dulaimi A., Al-Obaidi M. A., Talebizadehsardari P., Ahmad S., Ameen A. Analysis of heat transfer in various cavity geometries with and without nano-enhanced phase change material: A review. Energy Reports 2023:10:3757–3779. https://doi.org/10.1016/j.egyr.2023.10.036Search in Google Scholar
Dhaidan N. S., Khodadadi J. M. Melting and convection of phase change materials in different shape containers: A review. Renewable and Sustainable Energy Reviews 2015:43:449–477. https://doi.org/10.1016/j.rser.2014.11.017Search in Google Scholar
Irwan M. A. M., Azwadi C. S. N., Asako Y., Ghaderian J. Review on numerical simulations for nano-enhanced phase change material (NEPCM) phase change process. Journal of Thermal Analysis and Calorimetry 2020:141(2):669–684. https://doi.org/10.1007/s10973-019-09038-2Search in Google Scholar
Bu sinnah Z. A. Conventional and nano-enhanced Phase Change Material melting simulation by using Lattice Boltzmann method: A comprehensive review. Energy Reports 2023:9:3745–3754. https://doi.org/10.1016/j.egyr.2023.02.056Search in Google Scholar
Xiong T., Zheng L., Shah K. W. Nano-enhanced phase change materials (NePCMs): A review of numerical simulations. Applied Thermal Engineering 2020:178:115492. https://doi.org/10.1016/j.applthermaleng.2020.115492Search in Google Scholar
Abdellatif H. E., Belaadi A., Arshad A., Bourchak M. Modeling and performance analysis of phase change materials in advanced thermal energy storage systems: A comprehensive review. Journal of Energy Storage 2025:121:116517. https://doi.org/10.1016/j.est.2025.116517Search in Google Scholar
Zsembinszki G., De Simone M., Shirbani M., Siavashi M., Bidabadi M. Phase Change Materials Energy Storage Enhancement Schemes and Implementing the Lattice Boltzmann Method for Simulations: A Review. Energies 2023:16(3):1059. https://doi.org/10.3390/en16031059Search in Google Scholar
Ferrer G., Barreneche C., Solé A., Juliá J. E., Cabeza L. F. Recent Patents on Nano-Enhanced Materials for Use in Thermal Energy Storage (TES). Recent Patents on Nanotechnology 2017:11(2):101–108. https://doi.org/10.2174/187221051102170711151312Search in Google Scholar
Maghrabie H. M., Elsaid K., Sayed E. T., Radwan A., Abo-Khalil A. G., Rezk H., Abdelkareem M. A., Olabi A. G. Phase change materials based on nanoparticles for enhancing the performance of solar photovoltaic panels: A review. Journal of Energy Storage 2022:48:103937. https://doi.org/10.1016/j.est.2021.103937Search in Google Scholar
Al Miaari A., Ali H. M. Recent advances on nano-enhanced phase change materials (NEPCMs) for photovoltaic thermal management and role of machine learning: A review of fundamentals, preparation, characterization, and thermo-physical properties. Journal of Energy Storage 2025:124:116544. https://doi.org/10.1016/j.est.2025.116544Search in Google Scholar
Tyagi P. K., Kumar R., Said Z. Recent advances on the role of nanomaterials for improving the performance of photovoltaic thermal systems: Trends, challenges and prospective. Nano Energy 2022:93:106834. https://doi.org/10.1016/j.nanoen.2021.106834Search in Google Scholar
Ansari Z. N., Kushwaha N. Exploring the influence of integrating nano-enhanced phase change material on various solar still systems productivity: A systematic literature review. Desalination 2025:609:118851. https://doi.org/10.1016/j.desal.2025.118851Search in Google Scholar
Paul U. K., Mohtasim M. S., Kibria M. G., Das B. K. Nano-material based composite phase change materials and nanofluid for solar thermal energy storage applications: Featuring numerical and experimental approaches. Journal of Energy Storage 2024:98(B):113032. https://doi.org/10.1016/j.est.2024.113032Search in Google Scholar
Bait O. A critical review on triangular pyramid, weir–type, spherical, and hemispherical solar water distiller conceptions. Solar Energy 2024:269:112322. https://doi.org/10.1016/j.solener.2024.112322Search in Google Scholar
Alawee W. H., Basem A., Mohammed S. A., Majdi H. S., Abdullah A. S., Aldabesh A., Sultan A. J., Amro M. I., Omara Z. M., Essa F. A. Cords wick distillers for water distillation - A comparative review. Results in Engineering 2024:24:102984. https://doi.org/10.1016/j.rineng.2024.102984Search in Google Scholar
Pareira J., Souza R., Moreira A., Moita A. A Review on the Nanofluids-PCMs Integrated Solutions for Solar Thermal Heat Transfer Enhancement Purposes. Technologies 2023:11(6):166. https://doi.org/10.3390/technologies11060166Search in Google Scholar
Shoeibi S., Jamil F., Parsa S. M., Mehdi S., Kargarsharifabad H., Mirjalily S. A. A., Guo W., Ngo H. H., Ni B-J., Khiadani. Recent advancements in applications of encapsulated phase change materials for solar energy systems: A state of the art review. Journal of Energy Storage 2024:94:112401. https://doi.org/10.1016/j.est.2024.112401Search in Google Scholar
Sehrawat R., Sahdev R. K., Tiwari S. Heat storage material: a hope in solar thermal. Environmental Science and Pollution Research 2022:30(5):11175–11198. https://doi.org/10.1007/s11356-022-24552-xSearch in Google Scholar
Paul J., Kadirgama K., Samykano M., Pandey A. K., Tyagi V. V. A comprehensive review on thermophysical properties and solar thermal applications of organic nano composite phase change materials. Journal of Energy Storage 2022:45:103415. https://doi.org/10.1016/j.est.2021.103415Search in Google Scholar
Alhuyi Nazari M., Maleki A., Assad M. E. H., Rosen M. A., Haghighi A., Sharabaty H., Chen L. A review of nanomaterial incorporated phase change materials for solar thermal energy storage. Solar Energy 2021:228:725–743. https://doi.org/10.1016/j.solener.2021.08.051Search in Google Scholar
Dubey A., Arora A. Effect of various energy storage phase change materials (PCMs) and nano-enhanced PCMs on the performance of solar stills: A review. Journal of Energy Storage 2024:97(B):112938. https://doi.org/10.1016/j.est.2024.112938Search in Google Scholar
Hamzat A. K., Pasanaje A. H., Omisanya M. I., Sahin A. Z., Maselugbo A. O., Adediran I. A., Mudashiru L. O., Asmatulu E., Oyetunji O. R., Asmatulu R. Phase change materials in solar energy storage: Recent progress, environmental impact, challenges, and perspectives. Journal of Energy Storage 2025:114(A):115762. https://doi.org/10.1016/j.est.2025.115762Search in Google Scholar
Naveenkumar R., Ravichandran M., Mohanavel V., Karthick A., Aswin L. S. R. L., Priyanka S. S. H., Kumar S. K., Kumar S. P. Review on phase change materials for solar energy storage applications,” Environmental Science and Pollution Research 2021:29(7):9491–9532. https://doi.org/10.1007/s11356-021-17152-8Search in Google Scholar