This work is licensed under the Creative Commons Attribution 4.0 International License.
Abrishami S., Shirali A., Sharples N., Kartal G. E., Macintyre L., Doustdar O. Textile Recycling and Recovery: An Eco-friendly Perspective on Textile and Garment Industries Challenges. Text. Res. J. 2024:94(23–24):2815–2834. https://doi.org/10.1177/00405175241247806Search in Google Scholar
Ellen MacArthur Foundation. A new textiles economy: Redesigning fashion’s future. 2017.Search in Google Scholar
United Nations. The 2030 Agenda for Sustainable Development. [Online]. [Accessed: 20.03.2025]. Available: https://www.un.org/sustainabledevelopment/development-agenda/Search in Google Scholar
European Commission. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions. A new Circular Economy Action Plan. Brussels, 2020. [Online]. [Accessed: 13.02.2025]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FINSearch in Google Scholar
European Union. Directive 2008/98/EC of the European Parliament and of the Council on waste and repealing certain directives. Official Journal of the European Union, 2018.Search in Google Scholar
McKinsey & Company. Scaling textile recycling in Europe: Turning waste into value. 2022. [Online]. [Accessed: 17.03.2025]. Available: https://www.mckinsey.com/industries/retail/our-insights/scaling-textile-recycling-in-europe-turning-waste-into-value#/Search in Google Scholar
European Environment Agency. Management of used and waste textiles in Europe’s circular economy. In EEA Briefing. LU: Publications Office, 2024. [Online]. [Accessed: 18.03.2025]. Available: https://data.europa.eu/doi/10.2800/229868Search in Google Scholar
Matayeva A., Madsen A. S., Biller P. Evaluation of different fiber impurities on hydrothermal liquefaction of mixed textile waste. Resour. Conserv. Recycl. 2023:190:106833. https://doi.org/10.1016/j.resconrec.2022.106833Search in Google Scholar
Seifali Abbas-Abadi M. et al. Advancing Textile Waste Recycling: Challenges and Opportunities Across Polymer and Non-Polymer Fiber Types. Polymers 2025:17(5):628. https://doi.org/10.3390/polym17050628Search in Google Scholar
Lu L. et al. Current recycling strategies and high-value utilization of waste cotton. Sci. Total Environ. 2023:856:158798. https://doi.org/10.1016/j.scitotenv.2022.158798Search in Google Scholar
Pensupa N. et al. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects. In Chemistry and Chemical Technologies in Waste Valorization, Lin C. S. K., Ed., in Topics in Current Chemistry Collections. Cham: Springer International Publishing, 2017:189–228. https://doi.org/10.1007/978-3-319-90653-9_7Search in Google Scholar
Shahid M. A., Raza M., Javed M. A., Khan Z., Ali S., Ahmad I. Prospects and challenges of recycling and reusing post-consumer garments: A review. Clean. Eng. Technol. 2024:19:100744. https://doi.org/10.1016/j.clet.2024.100744Search in Google Scholar
Baloyi R. B., Gbadeyan O. J., Sithole B., Chunilall V. Recent advances in recycling technologies for waste textile fabrics: A review. Text. Res. J. 2024:94(3–4):508–529. https://doi.org/10.1177/00405175231210239Search in Google Scholar
Wang S., Salmon S. Progress toward Circularity of Polyester and Cotton Textiles. Sustain. Chem. 2022:3(3):376–403. https://doi.org/10.3390/suschem3030024Search in Google Scholar
Loo S.-L., Yu E., Hu X. Tackling critical challenges in textile circularity: A review on strategies for recycling cellulose and polyester from blended fabrics. J. Environ. Chem. Eng. 2023:11(5):110482. https://doi.org/10.1016/j.jece.2023.110482Search in Google Scholar
Andini E., Bhalode P., Gantert E., Sadula S., Vlachos D. G. Chemical recycling of mixed textile waste. Sci. Adv. 2024:10(27):eado6827. https://doi.org/10.1126/sciadv.ado6827Search in Google Scholar
Patel N., Blumberga D. Insights of Bioeconomy: Biopolymer Evaluation Based on Sustainability Criteria. Environ. Clim. Technol. 2023:27(1):323–338. https://doi.org/10.2478/rtuect-2023-0025Search in Google Scholar
Valtere M., et al. The Versatility of the Bioeconomy. Sustainability Aspects of the Use of Bran. Environ. Clim. Technol. 2022:26(1):658–669. https://doi.org/10.2478/rtuect-2022-0050Search in Google Scholar
Zlaugotne B., Zihare L., Balode L., Kalnbalkite A., Khabdullin A., Blumberga D. Multi-Criteria Decision Analysis Methods Comparison. Environ. Clim. Technol. 2020:24(1):454–471. https://doi.org/10.2478/rtuect-2020-0028Search in Google Scholar
Ibáñez-Forés V., Bovea M. D., Pérez-Belis V. A holistic review of applied methodologies for assessing and selecting the optimal technological alternative from a sustainability perspective. J. Clean. Prod. 2014:70:259–281. https://doi.org/10.1016/j.jclepro.2014.01.082Search in Google Scholar
Mertzanakis C., Vlachokostas C., Toufexis C., Michailidou A. V. Closing the Loop between Waste-to-Energy Technologies: A Holistic Assessment Based on Multiple Criteria. Energies 2024:17(12):2971. https://doi.org/10.3390/en17122971Search in Google Scholar
Levänen J., Uusitalo V., Härri A., Kareinen E., Linnanen L. Innovative recycling or extended use? Comparing the global warming potential of different ownership and end-of-life scenarios for textiles. Environ. Res. Lett. 2021:16(5):054069. https://doi.org/10.1088/1748-9326/abfac3Search in Google Scholar
Mankins J. C. Technology readiness assessments: A retrospective. Acta Astronaut. 2009:65(9–10):1216–1223. https://doi.org/10.1016/j.actaastro.2009.03.058Search in Google Scholar
Ono S., Tsusaka T. W. Comparative Analysis of Environmental, Economic, and Social Criteria for Plastic Recycling Technology Selection in India, Sri Lanka, Pakistan, and Thailand. Int. J. Sustain. Dev. Plan. 2023:18(8):2461–2471. https://doi.org/10.18280/ijsdp.180817Search in Google Scholar
Li P., Qian H., Wu J., Chen J. Sensitivity analysis of TOPSIS method in water quality assessment: I. Sensitivity to the parameter weights. Environ. Monit. Assess. 2013:185(3):2453–2461. https://doi.org/10.1007/s10661-012-2723-9Search in Google Scholar
Echeverria C. A., Handoko W., Pahlevani F., Sahajwalla V. Cascading use of textile waste for the advancement of fibre reinforced composites for building applications. J. Clean. Prod. 2019:208:1524–1536. https://doi.org/10.1016/j.jclepro.2018.10.227Search in Google Scholar
Gomez T. S., et al. Development of a myco-material based on textile and agro-industrial waste for thermal insulation. E3S Web Conf. 2024:546:03003. https://doi.org/10.1051/e3sconf/202454603003Search in Google Scholar
Li M., Luo J., Huang Y., Li X., Yu T., Ge M. Recycling of waste poly(ethylene terephthalate) into flame-retardant rigid polyurethane foams. J. Appl. Polym. Sci. 2014:131(19):app.40857. https://doi.org/10.1002/app.40857Search in Google Scholar
Sun H., Chen Z., Zhou J., Chen L., Zuo W. Recovery of high-quality terephthalic acid from waste polyester textiles via a neutral hydrolysis method. J. Environ. Chem. Eng. 2024:12(3):112558. https://doi.org/10.1016/j.jece.2024.112558Search in Google Scholar
Ravikumar D., Mani P., Bernaurdshaw N., Vajiravelu S. Microwave-Induced Chemical Recycling of Colored Polyester Textile Wastes Promoted by Zn[(L)Proline]2, as a Recyclable Homogeneous Catalyst. Waste Biomass Valorization 2024:15(8):4585–4598. https://doi.org/10.1007/s12649-024-02522-3Search in Google Scholar
Kirstein M., et al. Monomer Recycling and Repolymerization of Post-Consumer Polyester Textiles. Chem. Ing. Tech. 2023:95(8):1290–1296. https://doi.org/10.1002/cite.202200197Search in Google Scholar
Islam S., Bhat G., Mani S. Life cycle assessment of thermal insulation materials produced from waste textiles. J. Mater. Cycles Waste Manag. 2024:26(2):1071–1085. https://doi.org/10.1007/s10163-023-01882-7Search in Google Scholar
Hussain A., Goljandin D., Podgursky V., Abbas M. M., Krasnou I. Experimental mechanics analysis of recycled polypropylene-cotton composites for commercial applications. Adv. Ind. Eng. Polym. Res. 2023:6(3):226–238. https://doi.org/10.1016/j.aiepr.2022.11.001Search in Google Scholar
Sanchis-Sebastiá M., Ruuth E., Stigsson L., Galbe M., Wallberg O. Novel sustainable alternatives for the fashion industry: A method of chemically recycling waste textiles via acid hydrolysis. Waste Manag. 2021:121:248–254. https://doi.org/10.1016/j.wasman.2020.12.024Search in Google Scholar
Ruuth E., et al. Reclaiming the Value of Cotton Waste Textiles: A New Improved Method to Recycle Cotton Waste Textiles via Acid Hydrolysis. Recycling 2022:7(4):57. https://doi.org/10.3390/recycling7040057Search in Google Scholar
Cao H., Cobb K., Yatvitskiy M., Wolfe M., Shen H. Textile and Product Development from End-of-Use Cotton Apparel: A Study to Reclaim Value from Waste. Sustainability 2022:14(14):8553. https://doi.org/10.3390/su14148553Search in Google Scholar
Singh V., Wyatt J., Zoungrana A., Yuan Q. Evaluation of Vermicompost Produced by Using Post-Consumer Cotton Textile as Carbon Source. Recycling 2022:7(1):10. https://doi.org/10.3390/recycling7010010Search in Google Scholar
Opálková Šišková A., et al. Reuse of Textile Waste to Production of the Fibrous Antibacterial Membrane with Filtration Potential. Nanomaterials 2021:12(1):50. https://doi.org/10.3390/nano12010050Search in Google Scholar
Raj M., Fatima S., Tandon N. Recycled materials as a potential replacement to synthetic sound absorbers: A study on denim shoddy and waste jute fibers. Appl. Acoust. 2020:159:107070. https://doi.org/10.1016/j.apacoust.2019.107070Search in Google Scholar
Aman, Tonk D., Shokeen K., Singh D. K. Development of fire retarding composite board for fire compartmentation application using waste denim: A review. Mater. Today Proc. 2022:60:259–266. https://doi.org/10.1016/j.matpr.2021.12.513Search in Google Scholar
Vadivel R., Nirmala M., Raji K., Siddaiah B., Ramamurthy P. Synthesis of highly luminescent carbon dots from postconsumer waste silk cloth and investigation of its electron transfer dynamics with methyl viologen dichloride. J. Indian Chem. Soc. 2021:98(11):100181. https://doi.org/10.1016/j.jics.2021.100181Search in Google Scholar
Bediako J. K., Wei W., Yun Y.-S. Low-cost renewable adsorbent developed from waste textile fabric and its application to heavy metal adsorption. J. Taiwan Inst. Chem. Eng. 2016:63:250–258. https://doi.org/10.1016/j.jtice.2016.03.009Search in Google Scholar
Zhang J., et al. Fabrication of leather-like yarns using waste leather for textile application. Prog. Org. Coat. 2024:186:108053. https://doi.org/10.1016/j.porgcoat.2023.108053Search in Google Scholar
Haslinger S., Hummel M., Anghelescu-Hakala A., Määttänen M., Sixta H. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Manag. 2019:97:88–96. https://doi.org/10.1016/j.wasman.2019.07.040Search in Google Scholar
Xia G., et al. Complete recycling and valorization of waste textiles for value-added transparent films via an ionic liquid. J. Environ. Chem. Eng. 2021:9(5):106182. https://doi.org/10.1016/j.jece.2021.106182Search in Google Scholar
Apostolopoulou-Kalkavoura V., Fijoł N., Lombardo S., Ruiz-Caldas M., Mathew A. P. In Situ Functionalisation and Upcycling of Post-Consumer Textile Blends into 3D Printable Nanocomposite Filaments. Adv. Sustain. Syst. 2024:8(9):2400132. https://doi.org/10.1002/adsu.202400132Search in Google Scholar
Hu Y., Du C., Pensupa N., Lin C. S. K. Optimisation of fungal cellulase production from textile waste using experimental design. Process Saf. Environ. Prot. 2018:118:133–142. https://doi.org/10.1016/j.psep.2018.06.009Search in Google Scholar
Mihalyi S., et al. Simultaneous saccharification and fermentation with Weizmannia coagulans for recovery of synthetic fibers and production of lactic acid from blended textile waste. Resour. Conserv. Recycl. 2023:196:107060. https://doi.org/10.1016/j.resconrec.2023.107060Search in Google Scholar
El Wazna M., El Fatihi M., El Bouari A., Cherkaoui O. Thermo physical characterization of sustainable insulation materials made from textile waste. J. Build. Eng. 2017:12:196–201. https://doi.org/10.1016/j.jobe.2017.06.008Search in Google Scholar
Çay A., Yanık J., Akduman Ç., Duman G., Ertaş H. Application of textile waste derived biochars onto cotton fabric for improved performance and functional properties. J. Clean. Prod. 2020:251:119664. https://doi.org/10.1016/j.jclepro.2019.119664Search in Google Scholar
Lapa H. M., Martins L. M. D. R. S. p-Xylene Oxidation to Terephthalic Acid: New Trends. Molecules 2023:28(4):1922. https://doi.org/10.3390/molecules28041922Search in Google Scholar
Guo G., He Y., Jin F., Mašek O., Huang Q. Application of life cycle assessment and machine learning for the production and environmental sustainability assessment of hydrothermal bio-oil. Bioresour. Technol. 2023:379:129027. https://doi.org/10.1016/j.biortech.2023.129027Search in Google Scholar
Gian M., García-Velásquez C., Van Der Meer Y. Comparative life cycle assessment of the biochemical and thermochemical production routes of biobased terephthalic acid using Miscanthus in the Netherlands. Clean. Environ. Syst. 2022:6:100085. https://doi.org/10.1016/j.cesys.2022.100085Search in Google Scholar
Arya M., Skrifvars M., Khalili P. Performance and life cycle assessment of composites reinforced with natural fibers and end-of-life textiles. J. Compos. Sci. 2024:8(6):196. https://doi.org/10.3390/jcs8060196Search in Google Scholar
Ecoinvent 3.10. Glass fibre reinforced plastic, polyamide, injection moulded GLO. Market for glass fibre reinforced plastic, polyamide, injection moulded.Search in Google Scholar
Luo Y., Selvam E., Vlachos D. G., Ierapetritou M. Economic and environmental benefits of modular microwave-assisted polyethylene terephthalate depolymerization. ACS Sustain. Chem. Eng. 2023:11(10):4209–4218. https://doi.org/10.1021/acssuschemeng.2c07203Search in Google Scholar
Volk R., et al. Life cycle assessment of mycelium-based composite materials. Resour. Conserv. Recycl. 2024:205:107579. https://doi.org/10.1016/j.resconrec.2024.107579Search in Google Scholar
Elsacker E., Vandelook S., Van Wylick A., Ruytinx J., De Laet L., Peeters E. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 2020:725:138431. https://doi.org/10.1016/j.scitotenv.2020.138431Search in Google Scholar
Panwar N. L., Paul A. S. An overview of recent development in bio-oil upgrading and separation techniques. Environ. Eng. Res. 2020:26(5):200382–0. https://doi.org/10.4491/eer.2020.382Search in Google Scholar
Valtere M., Bezrucko T., Blumberga D. Analysis of textile circularity potential. Environ. Clim. Technol. 2023:27(1):220–232. https://doi.org/10.2478/rtuect-2023-0017Search in Google Scholar
Borjan D., Knez Ž., Knez M. Recycling of carbon fiber-reinforced composites – Difficulties and future perspectives. Materials 2021:14(15):4191. https://doi.org/10.3390/ma14154191Search in Google Scholar
De Fazio D., Boccarusso L., Formisano A., Viscusi A., Durante M. A review on the recycling technologies of fibre-reinforced plastic (FRP) materials used in industrial fields. J. Mar. Sci. Eng. 2023:11(4):851. https://doi.org/10.3390/jmse11040851Search in Google Scholar
Bahramian M., Yetilmezsoy K. Life cycle assessment of the building industry: An overview of two decades of research (1995–2018). Energy Build. 2020:219:109917. https://doi.org/10.1016/j.enbuild.2020.109917Search in Google Scholar
Alaneme K. K., et al. Mycelium based composites: A review of their bio-fabrication procedures, material properties and potential for green building and construction applications. Alex. Eng. J. 2023:83:234–250. https://doi.org/10.1016/j.aej.2023.10.012Search in Google Scholar
Egan J., Salmon S. Strategies and progress in synthetic textile fiber biodegradability. SN Appl. Sci. 2022:4(1):22. https://doi.org/10.1007/s42452-021-04851-7Search in Google Scholar
Singh A., et al. Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate). Joule 2021:5(9):2479–2503. https://doi.org/10.1016/j.joule.2021.06.015Search in Google Scholar
Mahmood R., Parshetti G. K., Balasubramanian R. Energy, exergy and techno-economic analyses of hydrothermal oxidation of food waste to produce hydro-char and bio-oil. Energy 2016:102:187–198. https://doi.org/10.1016/j.energy.2016.02.042Search in Google Scholar
Suriani M. J., et al. Critical review of natural fiber reinforced hybrid composites: Processing, properties, applications and cost. Polymers 2021:13(20):3514. https://doi.org/10.3390/polym13203514Search in Google Scholar
Silicone coated glass fiber woven roving fiberglass reinforced composite material from factory for composite materials. [Online]. [Accessed: 13.01.2025]. Available: https://www.alibaba.com/product-detail/Silicone-Coated-Glass-Fiber-Woven-Roving_60112675930.htmlSearch in Google Scholar
Hashemi A., Derakhshan G., Alizadeh Pahlavani M. R., Abdi B. Techno-economic analysis of a stand-alone hybrid wind-power fuel-cell grid system: A case study in Shahryar region of Tehran. Environ. Clim. Technol. 2020:24(1):691–705. https://doi.org/10.2478/rtuect-2020-0043Search in Google Scholar
Alemu D., Tafesse M., Mondal A. K. Mycelium-based composite: The future sustainable biomaterial. Int. J. Biomater. 2022:2022(1). https://doi.org/10.1155/2022/8401528Search in Google Scholar
Verified Market Reports. Global purified terephthalic acid (PTA) market by type (Type 1, Type 2), by application (Polyester, Polybutylene Terephthalate (PBT)), by geographic scope and forecast. [Online]. [Accessed: 18.12.2024]. Available: https://www.verifiedmarketreports.com/product/purified-terephthalic-acid-pta-market/Search in Google Scholar
Verified Market Reports. Global bio-oil market by type (Bioethanol, Biodiesel), by application (Industrial fuels, Transportation fuels), by geographic scope and forecast. [Online]. [Accessed: 18.12.2024]. Available: https://www.verifiedmarketreports.com/product/bio-oil-market/Search in Google Scholar
Starits Research. Construction composites market size, share & trends analysis report. [Online]. [Accessed: 18.12.2024]. Available: https://straitsresearch.com/report/construction-composites-marketSearch in Google Scholar
Starits Research. Construction Composites Market Size, Share & Trends Analysis Report by Resin. Forecasts, 2024–2032. [Online]. [Accessed: 18.12.2024]. Available: https://straitsresearch.com/report/construction-composites-marketSearch in Google Scholar
GVR. Insulation Market Size, Share & Trends Analysis Report by Product (Glass Wool, Mineral Wool, EPS, XPS, CMS Fibers), By End-use (Construction, Industrial, HVAC & OEM), By Region, And Segment Forecasts, 2024–2030. [Online]. [Accessed: 18.12.2024]. Available: https://www.grandviewresearch.com/industry-analysis/insulation-marketSearch in Google Scholar
FORTUNE. Polyethylene Terephthalate (PET) Market Size, Share & Industry Analysis, By Type (Virgin and Recycled), Application (Rigid Packaging, Film, Sheets & Straps, and Others), and Regional Forecast, 2024–2032. [Online]. [Accessed: 20.12.2024]. Available: https://www.fortunebusinessinsights.com/industry-reports/polyethylene-terephthalate-pet-market-101743Search in Google Scholar
DATAINTELO. Recycled Cotton Yarn Market. [Online]. [Accessed: 21.12.2024]. Available: https://dataintelo.com/report/global-recycled-cotton-yarn-marketSearch in Google Scholar
Matayeva A., Biller P. Hydrothermal liquefaction of post-consumer mixed textile waste for recovery of bio-oil and terephthalic acid. Resour. Conserv. Recycl. 2022:185:106502. https://doi.org/10.1016/j.resconrec.2022.106502Search in Google Scholar
Sulochani R. M. N., Jayasinghe R. A., Priyadarshana G., Nilmini A. H. L. R., Ashokcline M., Dharmaratne P. D. Waste-based composites using post-industrial textile waste and packaging waste from the textile manufacturing industry for non-structural applications. Sustain. Chem. Environ. 2024:8:100163. https://doi.org/10.1016/j.scenv.2024.100163Search in Google Scholar
Mohan S., Thilagavathi G., Rajkhowa R. Development of micro dust reinforced composite for building applications. J. Clean. Prod. 2024:470:143244. https://doi.org/10.1016/j.jclepro.2024.143244Search in Google Scholar
Kamble Z., Behera B. K. Sustainable hybrid composites reinforced with textile waste for construction and building applications. Constr. Build. Mater. 2021:284:122800. https://doi.org/10.1016/j.conbuildmat.2021.122800Search in Google Scholar
Rakhsh Mahpour A., Ventura H., Ardanuy M., Rosell J. R., Claramunt J. The effect of fibres and carbonation conditions on the mechanical properties and microstructure of lime/flax composites. Cem. Concr. Compos. 2023:138:104981. https://doi.org/10.1016/j.cemconcomp.2023.104981Search in Google Scholar
Suthatho A., Rattanawongkun P., Tawichai N., Tanpichai S., Boonmahitthisud A., Soykeabkaew N. Low-density all-cellulose composites made from cotton textile waste with promising thermal insulation and acoustic absorption properties. ACS Appl. Polym. Mater. 2024:6(1):390–397. https://doi.org/10.1021/acsapm.3c02076Search in Google Scholar
Kamble Z., Behera B. K. Fabrication and performance evaluation of waste cotton and polyester fiber-reinforced green composites for building and construction applications. Polym. Compos. 2021:42(6):3025–3037. https://doi.org/10.1002/pc.26036Search in Google Scholar
Dev B., Rahman M. A., Tazrin T., Islam M. S., Datta A., Rahman M. Z. Investigation of mechanical properties of nonwoven recycled cotton/PET fiber-reinforced polyester hybrid composites. Macromol. Mater. Eng. 2024:309(6):2400020. https://doi.org/10.1002/mame.202400020Search in Google Scholar
Zhou W., Huang H., Du S., Wang Q., He J., Cui S. Facile fabrication of polyester filament fabric with highly and durable hydrophilic surface by microwave-assisted glycolysis. J. Appl. Polym. Sci. 2016:133(40):app.44069. https://doi.org/10.1002/app.44069Search in Google Scholar
Ruiz A., Cogdell C., Mak J., Rowe A., Wan S., La Saponara V. Valorization and biorefinery of local agricultural and textile wastes through mycelium composites for structural applications. Res. Dir. Biotechnol. Des. 2024:2:e10. https://doi.org/10.1017/btd.2024.8Search in Google Scholar
Saini R., Kaur G., Brar S. K. Textile residue-based mycelium biocomposites from Pleurotus ostreatus. Mycology 2024:15(4):683–689. https://doi.org/10.1080/21501203.2023.2278308Search in Google Scholar
Jiang L., Walczyk D., McIntyre G. A new approach to manufacturing biocomposite sandwich structures: Investigation of preform shell behavior. J. Manuf. Sci. Eng. 2017:139(2):021014. https://doi.org/10.1115/1.4034278Search in Google Scholar
Jiang L., Walczyk D., McIntyre G., Bucinell R., Li B. Bioresin infused then cured mycelium-based sandwich-structure biocomposites: Resin transfer molding (RTM) process, flexural properties, and simulation. J. Clean. Prod. 2019:207:123–135. https://doi.org/10.1016/j.jclepro.2018.09.255Search in Google Scholar
Jiang L., Walczyk D., McIntyre G., Bucinell R., Tudryn G. Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms. J. Manuf. Process. 2017:28:50–59. https://doi.org/10.1016/j.jmapro.2017.04.029Search in Google Scholar
Jiang L., Walczyk D. F., Li B. Modeling of glue penetration into natural fiber reinforcements by roller infusion. J. Manuf. Sci. Eng. 2018:140(4):041006. https://doi.org/10.1115/1.4038514Search in Google Scholar
Nagappan S., et al. Catalytic hydrothermal liquefaction of biomass into bio-oils and other value-added products – A review. Fuel 2021:285:119053. https://doi.org/10.1016/j.fuel.2020.119053Search in Google Scholar
InsulationGo. What is thermal conductivity? [Online]. [Accessed: 16.01.2024]. Available: https://insulationgo.co.uk/thermal-conductivity/Search in Google Scholar
Lowry P. P., Wagner K. A. Hydrothermal liquefaction treatment hazard analysis report. PNNL--24219 Rev 3, 1406834. Sep. 2016. https://doi.org/10.2172/1406834Search in Google Scholar
Asmatulu E., Alonayni A., Alamir M. Safety concerns in composite manufacturing and machining. In: Naguib H. E., ed. Behavior and Mechanics of Multifunctional Materials and Composites XII. Denver, United States: SPIE; Mar. 2018:68. https://doi.org/10.1117/12.2296707Search in Google Scholar
Beigzadeh Z., Pourhassan B., Kalantary S., Golbabaei F. Occupational exposure to wood dust and risk of nasopharyngeal cancer: A systematic review and meta-analysis. Environ. Res. 2019:171:170–176. https://doi.org/10.1016/j.envres.2018.12.022Search in Google Scholar
European Chemicals Agency (ECHA). Ethane-1,2-diol. [Online]. [Accessed: 19.01.2025]. https://echa.europa.eu/lv/substance-information/-/substanceinfo/100.003.159Search in Google Scholar
Balaeș T., Radu B.-M., Tănase C. Mycelium-composite materials – A promising alternative to plastics? J. Fungi 2023:9(2):210. https://doi.org/10.3390/jof9020210Search in Google Scholar
Baxi S. N., et al. Exposure and health effects of fungi on humans. J. Allergy Clin. Immunol. Pract. 2016:4(3):396–404. https://doi.org/10.1016/j.jaip.2016.01.008Search in Google Scholar
Higgins C., Margot H., Warnquist S., Obeysekare E., Mehta K. Mushroom cultivation in the developing world: A comparison of cultivation technologies. In: 2017 IEEE Global Humanitarian Technology Conference (GHTC). San Jose, 2017:1–7Search in Google Scholar