Open Access

Recycling of Mixed Post-Consumer Textiles: Opportunities for Sustainable Product Development

, ,  and   
Jul 08, 2025

Cite
Download Cover

Abrishami S., Shirali A., Sharples N., Kartal G. E., Macintyre L., Doustdar O. Textile Recycling and Recovery: An Eco-friendly Perspective on Textile and Garment Industries Challenges. Text. Res. J. 2024:94(23–24):2815–2834. https://doi.org/10.1177/00405175241247806 Search in Google Scholar

Ellen MacArthur Foundation. A new textiles economy: Redesigning fashion’s future. 2017. Search in Google Scholar

United Nations. The 2030 Agenda for Sustainable Development. [Online]. [Accessed: 20.03.2025]. Available: https://www.un.org/sustainabledevelopment/development-agenda/ Search in Google Scholar

European Commission. Communication from the commission to the European parliament, the council, the European economic and social committee and the committee of the regions. A new Circular Economy Action Plan. Brussels, 2020. [Online]. [Accessed: 13.02.2025]. Available: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1583933814386&uri=COM:2020:98:FIN Search in Google Scholar

European Union. Directive 2008/98/EC of the European Parliament and of the Council on waste and repealing certain directives. Official Journal of the European Union, 2018. Search in Google Scholar

McKinsey & Company. Scaling textile recycling in Europe: Turning waste into value. 2022. [Online]. [Accessed: 17.03.2025]. Available: https://www.mckinsey.com/industries/retail/our-insights/scaling-textile-recycling-in-europe-turning-waste-into-value#/ Search in Google Scholar

European Environment Agency. Management of used and waste textiles in Europe’s circular economy. In EEA Briefing. LU: Publications Office, 2024. [Online]. [Accessed: 18.03.2025]. Available: https://data.europa.eu/doi/10.2800/229868 Search in Google Scholar

Matayeva A., Madsen A. S., Biller P. Evaluation of different fiber impurities on hydrothermal liquefaction of mixed textile waste. Resour. Conserv. Recycl. 2023:190:106833. https://doi.org/10.1016/j.resconrec.2022.106833 Search in Google Scholar

Seifali Abbas-Abadi M. et al. Advancing Textile Waste Recycling: Challenges and Opportunities Across Polymer and Non-Polymer Fiber Types. Polymers 2025:17(5):628. https://doi.org/10.3390/polym17050628 Search in Google Scholar

Lu L. et al. Current recycling strategies and high-value utilization of waste cotton. Sci. Total Environ. 2023:856:158798. https://doi.org/10.1016/j.scitotenv.2022.158798 Search in Google Scholar

Pensupa N. et al. Recent Trends in Sustainable Textile Waste Recycling Methods: Current Situation and Future Prospects. In Chemistry and Chemical Technologies in Waste Valorization, Lin C. S. K., Ed., in Topics in Current Chemistry Collections. Cham: Springer International Publishing, 2017:189–228. https://doi.org/10.1007/978-3-319-90653-9_7 Search in Google Scholar

Shahid M. A., Raza M., Javed M. A., Khan Z., Ali S., Ahmad I. Prospects and challenges of recycling and reusing post-consumer garments: A review. Clean. Eng. Technol. 2024:19:100744. https://doi.org/10.1016/j.clet.2024.100744 Search in Google Scholar

Baloyi R. B., Gbadeyan O. J., Sithole B., Chunilall V. Recent advances in recycling technologies for waste textile fabrics: A review. Text. Res. J. 2024:94(3–4):508–529. https://doi.org/10.1177/00405175231210239 Search in Google Scholar

Wang S., Salmon S. Progress toward Circularity of Polyester and Cotton Textiles. Sustain. Chem. 2022:3(3):376–403. https://doi.org/10.3390/suschem3030024 Search in Google Scholar

Loo S.-L., Yu E., Hu X. Tackling critical challenges in textile circularity: A review on strategies for recycling cellulose and polyester from blended fabrics. J. Environ. Chem. Eng. 2023:11(5):110482. https://doi.org/10.1016/j.jece.2023.110482 Search in Google Scholar

Andini E., Bhalode P., Gantert E., Sadula S., Vlachos D. G. Chemical recycling of mixed textile waste. Sci. Adv. 2024:10(27):eado6827. https://doi.org/10.1126/sciadv.ado6827 Search in Google Scholar

Patel N., Blumberga D. Insights of Bioeconomy: Biopolymer Evaluation Based on Sustainability Criteria. Environ. Clim. Technol. 2023:27(1):323–338. https://doi.org/10.2478/rtuect-2023-0025 Search in Google Scholar

Valtere M., et al. The Versatility of the Bioeconomy. Sustainability Aspects of the Use of Bran. Environ. Clim. Technol. 2022:26(1):658–669. https://doi.org/10.2478/rtuect-2022-0050 Search in Google Scholar

Zlaugotne B., Zihare L., Balode L., Kalnbalkite A., Khabdullin A., Blumberga D. Multi-Criteria Decision Analysis Methods Comparison. Environ. Clim. Technol. 2020:24(1):454–471. https://doi.org/10.2478/rtuect-2020-0028 Search in Google Scholar

Ibáñez-Forés V., Bovea M. D., Pérez-Belis V. A holistic review of applied methodologies for assessing and selecting the optimal technological alternative from a sustainability perspective. J. Clean. Prod. 2014:70:259–281. https://doi.org/10.1016/j.jclepro.2014.01.082 Search in Google Scholar

Mertzanakis C., Vlachokostas C., Toufexis C., Michailidou A. V. Closing the Loop between Waste-to-Energy Technologies: A Holistic Assessment Based on Multiple Criteria. Energies 2024:17(12):2971. https://doi.org/10.3390/en17122971 Search in Google Scholar

Levänen J., Uusitalo V., Härri A., Kareinen E., Linnanen L. Innovative recycling or extended use? Comparing the global warming potential of different ownership and end-of-life scenarios for textiles. Environ. Res. Lett. 2021:16(5):054069. https://doi.org/10.1088/1748-9326/abfac3 Search in Google Scholar

Mankins J. C. Technology readiness assessments: A retrospective. Acta Astronaut. 2009:65(9–10):1216–1223. https://doi.org/10.1016/j.actaastro.2009.03.058 Search in Google Scholar

Ono S., Tsusaka T. W. Comparative Analysis of Environmental, Economic, and Social Criteria for Plastic Recycling Technology Selection in India, Sri Lanka, Pakistan, and Thailand. Int. J. Sustain. Dev. Plan. 2023:18(8):2461–2471. https://doi.org/10.18280/ijsdp.180817 Search in Google Scholar

Li P., Qian H., Wu J., Chen J. Sensitivity analysis of TOPSIS method in water quality assessment: I. Sensitivity to the parameter weights. Environ. Monit. Assess. 2013:185(3):2453–2461. https://doi.org/10.1007/s10661-012-2723-9 Search in Google Scholar

Echeverria C. A., Handoko W., Pahlevani F., Sahajwalla V. Cascading use of textile waste for the advancement of fibre reinforced composites for building applications. J. Clean. Prod. 2019:208:1524–1536. https://doi.org/10.1016/j.jclepro.2018.10.227 Search in Google Scholar

Gomez T. S., et al. Development of a myco-material based on textile and agro-industrial waste for thermal insulation. E3S Web Conf. 2024:546:03003. https://doi.org/10.1051/e3sconf/202454603003 Search in Google Scholar

Li M., Luo J., Huang Y., Li X., Yu T., Ge M. Recycling of waste poly(ethylene terephthalate) into flame-retardant rigid polyurethane foams. J. Appl. Polym. Sci. 2014:131(19):app.40857. https://doi.org/10.1002/app.40857 Search in Google Scholar

Sun H., Chen Z., Zhou J., Chen L., Zuo W. Recovery of high-quality terephthalic acid from waste polyester textiles via a neutral hydrolysis method. J. Environ. Chem. Eng. 2024:12(3):112558. https://doi.org/10.1016/j.jece.2024.112558 Search in Google Scholar

Ravikumar D., Mani P., Bernaurdshaw N., Vajiravelu S. Microwave-Induced Chemical Recycling of Colored Polyester Textile Wastes Promoted by Zn[(L)Proline]2, as a Recyclable Homogeneous Catalyst. Waste Biomass Valorization 2024:15(8):4585–4598. https://doi.org/10.1007/s12649-024-02522-3 Search in Google Scholar

Kirstein M., et al. Monomer Recycling and Repolymerization of Post-Consumer Polyester Textiles. Chem. Ing. Tech. 2023:95(8):1290–1296. https://doi.org/10.1002/cite.202200197 Search in Google Scholar

Islam S., Bhat G., Mani S. Life cycle assessment of thermal insulation materials produced from waste textiles. J. Mater. Cycles Waste Manag. 2024:26(2):1071–1085. https://doi.org/10.1007/s10163-023-01882-7 Search in Google Scholar

Hussain A., Goljandin D., Podgursky V., Abbas M. M., Krasnou I. Experimental mechanics analysis of recycled polypropylene-cotton composites for commercial applications. Adv. Ind. Eng. Polym. Res. 2023:6(3):226–238. https://doi.org/10.1016/j.aiepr.2022.11.001 Search in Google Scholar

Sanchis-Sebastiá M., Ruuth E., Stigsson L., Galbe M., Wallberg O. Novel sustainable alternatives for the fashion industry: A method of chemically recycling waste textiles via acid hydrolysis. Waste Manag. 2021:121:248–254. https://doi.org/10.1016/j.wasman.2020.12.024 Search in Google Scholar

Ruuth E., et al. Reclaiming the Value of Cotton Waste Textiles: A New Improved Method to Recycle Cotton Waste Textiles via Acid Hydrolysis. Recycling 2022:7(4):57. https://doi.org/10.3390/recycling7040057 Search in Google Scholar

Cao H., Cobb K., Yatvitskiy M., Wolfe M., Shen H. Textile and Product Development from End-of-Use Cotton Apparel: A Study to Reclaim Value from Waste. Sustainability 2022:14(14):8553. https://doi.org/10.3390/su14148553 Search in Google Scholar

Singh V., Wyatt J., Zoungrana A., Yuan Q. Evaluation of Vermicompost Produced by Using Post-Consumer Cotton Textile as Carbon Source. Recycling 2022:7(1):10. https://doi.org/10.3390/recycling7010010 Search in Google Scholar

Opálková Šišková A., et al. Reuse of Textile Waste to Production of the Fibrous Antibacterial Membrane with Filtration Potential. Nanomaterials 2021:12(1):50. https://doi.org/10.3390/nano12010050 Search in Google Scholar

Raj M., Fatima S., Tandon N. Recycled materials as a potential replacement to synthetic sound absorbers: A study on denim shoddy and waste jute fibers. Appl. Acoust. 2020:159:107070. https://doi.org/10.1016/j.apacoust.2019.107070 Search in Google Scholar

Aman, Tonk D., Shokeen K., Singh D. K. Development of fire retarding composite board for fire compartmentation application using waste denim: A review. Mater. Today Proc. 2022:60:259–266. https://doi.org/10.1016/j.matpr.2021.12.513 Search in Google Scholar

Vadivel R., Nirmala M., Raji K., Siddaiah B., Ramamurthy P. Synthesis of highly luminescent carbon dots from postconsumer waste silk cloth and investigation of its electron transfer dynamics with methyl viologen dichloride. J. Indian Chem. Soc. 2021:98(11):100181. https://doi.org/10.1016/j.jics.2021.100181 Search in Google Scholar

Bediako J. K., Wei W., Yun Y.-S. Low-cost renewable adsorbent developed from waste textile fabric and its application to heavy metal adsorption. J. Taiwan Inst. Chem. Eng. 2016:63:250–258. https://doi.org/10.1016/j.jtice.2016.03.009 Search in Google Scholar

Zhang J., et al. Fabrication of leather-like yarns using waste leather for textile application. Prog. Org. Coat. 2024:186:108053. https://doi.org/10.1016/j.porgcoat.2023.108053 Search in Google Scholar

Haslinger S., Hummel M., Anghelescu-Hakala A., Määttänen M., Sixta H. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Manag. 2019:97:88–96. https://doi.org/10.1016/j.wasman.2019.07.040 Search in Google Scholar

Xia G., et al. Complete recycling and valorization of waste textiles for value-added transparent films via an ionic liquid. J. Environ. Chem. Eng. 2021:9(5):106182. https://doi.org/10.1016/j.jece.2021.106182 Search in Google Scholar

Apostolopoulou-Kalkavoura V., Fijoł N., Lombardo S., Ruiz-Caldas M., Mathew A. P. In Situ Functionalisation and Upcycling of Post-Consumer Textile Blends into 3D Printable Nanocomposite Filaments. Adv. Sustain. Syst. 2024:8(9):2400132. https://doi.org/10.1002/adsu.202400132 Search in Google Scholar

Hu Y., Du C., Pensupa N., Lin C. S. K. Optimisation of fungal cellulase production from textile waste using experimental design. Process Saf. Environ. Prot. 2018:118:133–142. https://doi.org/10.1016/j.psep.2018.06.009 Search in Google Scholar

Mihalyi S., et al. Simultaneous saccharification and fermentation with Weizmannia coagulans for recovery of synthetic fibers and production of lactic acid from blended textile waste. Resour. Conserv. Recycl. 2023:196:107060. https://doi.org/10.1016/j.resconrec.2023.107060 Search in Google Scholar

El Wazna M., El Fatihi M., El Bouari A., Cherkaoui O. Thermo physical characterization of sustainable insulation materials made from textile waste. J. Build. Eng. 2017:12:196–201. https://doi.org/10.1016/j.jobe.2017.06.008 Search in Google Scholar

Çay A., Yanık J., Akduman Ç., Duman G., Ertaş H. Application of textile waste derived biochars onto cotton fabric for improved performance and functional properties. J. Clean. Prod. 2020:251:119664. https://doi.org/10.1016/j.jclepro.2019.119664 Search in Google Scholar

Lapa H. M., Martins L. M. D. R. S. p-Xylene Oxidation to Terephthalic Acid: New Trends. Molecules 2023:28(4):1922. https://doi.org/10.3390/molecules28041922 Search in Google Scholar

Guo G., He Y., Jin F., Mašek O., Huang Q. Application of life cycle assessment and machine learning for the production and environmental sustainability assessment of hydrothermal bio-oil. Bioresour. Technol. 2023:379:129027. https://doi.org/10.1016/j.biortech.2023.129027 Search in Google Scholar

Ecoinvent 3.10. Crude ‘petroleum’ oil. RoW market for petroleum. Search in Google Scholar

Gian M., García-Velásquez C., Van Der Meer Y. Comparative life cycle assessment of the biochemical and thermochemical production routes of biobased terephthalic acid using Miscanthus in the Netherlands. Clean. Environ. Syst. 2022:6:100085. https://doi.org/10.1016/j.cesys.2022.100085 Search in Google Scholar

Arya M., Skrifvars M., Khalili P. Performance and life cycle assessment of composites reinforced with natural fibers and end-of-life textiles. J. Compos. Sci. 2024:8(6):196. https://doi.org/10.3390/jcs8060196 Search in Google Scholar

Ecoinvent 3.10. Glass fibre reinforced plastic, polyamide, injection moulded GLO. Market for glass fibre reinforced plastic, polyamide, injection moulded. Search in Google Scholar

Luo Y., Selvam E., Vlachos D. G., Ierapetritou M. Economic and environmental benefits of modular microwave-assisted polyethylene terephthalate depolymerization. ACS Sustain. Chem. Eng. 2023:11(10):4209–4218. https://doi.org/10.1021/acssuschemeng.2c07203 Search in Google Scholar

Volk R., et al. Life cycle assessment of mycelium-based composite materials. Resour. Conserv. Recycl. 2024:205:107579. https://doi.org/10.1016/j.resconrec.2024.107579 Search in Google Scholar

Elsacker E., Vandelook S., Van Wylick A., Ruytinx J., De Laet L., Peeters E. A comprehensive framework for the production of mycelium-based lignocellulosic composites. Sci. Total Environ. 2020:725:138431. https://doi.org/10.1016/j.scitotenv.2020.138431 Search in Google Scholar

Panwar N. L., Paul A. S. An overview of recent development in bio-oil upgrading and separation techniques. Environ. Eng. Res. 2020:26(5):200382–0. https://doi.org/10.4491/eer.2020.382 Search in Google Scholar

Valtere M., Bezrucko T., Blumberga D. Analysis of textile circularity potential. Environ. Clim. Technol. 2023:27(1):220–232. https://doi.org/10.2478/rtuect-2023-0017 Search in Google Scholar

Borjan D., Knez Ž., Knez M. Recycling of carbon fiber-reinforced composites – Difficulties and future perspectives. Materials 2021:14(15):4191. https://doi.org/10.3390/ma14154191 Search in Google Scholar

De Fazio D., Boccarusso L., Formisano A., Viscusi A., Durante M. A review on the recycling technologies of fibre-reinforced plastic (FRP) materials used in industrial fields. J. Mar. Sci. Eng. 2023:11(4):851. https://doi.org/10.3390/jmse11040851 Search in Google Scholar

Bahramian M., Yetilmezsoy K. Life cycle assessment of the building industry: An overview of two decades of research (1995–2018). Energy Build. 2020:219:109917. https://doi.org/10.1016/j.enbuild.2020.109917 Search in Google Scholar

Alaneme K. K., et al. Mycelium based composites: A review of their bio-fabrication procedures, material properties and potential for green building and construction applications. Alex. Eng. J. 2023:83:234–250. https://doi.org/10.1016/j.aej.2023.10.012 Search in Google Scholar

Egan J., Salmon S. Strategies and progress in synthetic textile fiber biodegradability. SN Appl. Sci. 2022:4(1):22. https://doi.org/10.1007/s42452-021-04851-7 Search in Google Scholar

Singh A., et al. Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate). Joule 2021:5(9):2479–2503. https://doi.org/10.1016/j.joule.2021.06.015 Search in Google Scholar

Mahmood R., Parshetti G. K., Balasubramanian R. Energy, exergy and techno-economic analyses of hydrothermal oxidation of food waste to produce hydro-char and bio-oil. Energy 2016:102:187–198. https://doi.org/10.1016/j.energy.2016.02.042 Search in Google Scholar

Suriani M. J., et al. Critical review of natural fiber reinforced hybrid composites: Processing, properties, applications and cost. Polymers 2021:13(20):3514. https://doi.org/10.3390/polym13203514 Search in Google Scholar

Silicone coated glass fiber woven roving fiberglass reinforced composite material from factory for composite materials. [Online]. [Accessed: 13.01.2025]. Available: https://www.alibaba.com/product-detail/Silicone-Coated-Glass-Fiber-Woven-Roving_60112675930.html Search in Google Scholar

Hashemi A., Derakhshan G., Alizadeh Pahlavani M. R., Abdi B. Techno-economic analysis of a stand-alone hybrid wind-power fuel-cell grid system: A case study in Shahryar region of Tehran. Environ. Clim. Technol. 2020:24(1):691–705. https://doi.org/10.2478/rtuect-2020-0043 Search in Google Scholar

Alemu D., Tafesse M., Mondal A. K. Mycelium-based composite: The future sustainable biomaterial. Int. J. Biomater. 2022:2022(1). https://doi.org/10.1155/2022/8401528 Search in Google Scholar

Verified Market Reports. Global purified terephthalic acid (PTA) market by type (Type 1, Type 2), by application (Polyester, Polybutylene Terephthalate (PBT)), by geographic scope and forecast. [Online]. [Accessed: 18.12.2024]. Available: https://www.verifiedmarketreports.com/product/purified-terephthalic-acid-pta-market/ Search in Google Scholar

Verified Market Reports. Global bio-oil market by type (Bioethanol, Biodiesel), by application (Industrial fuels, Transportation fuels), by geographic scope and forecast. [Online]. [Accessed: 18.12.2024]. Available: https://www.verifiedmarketreports.com/product/bio-oil-market/ Search in Google Scholar

Starits Research. Construction composites market size, share & trends analysis report. [Online]. [Accessed: 18.12.2024]. Available: https://straitsresearch.com/report/construction-composites-market Search in Google Scholar

Starits Research. Construction Composites Market Size, Share & Trends Analysis Report by Resin. Forecasts, 2024–2032. [Online]. [Accessed: 18.12.2024]. Available: https://straitsresearch.com/report/construction-composites-market Search in Google Scholar

GVR. Insulation Market Size, Share & Trends Analysis Report by Product (Glass Wool, Mineral Wool, EPS, XPS, CMS Fibers), By End-use (Construction, Industrial, HVAC & OEM), By Region, And Segment Forecasts, 2024–2030. [Online]. [Accessed: 18.12.2024]. Available: https://www.grandviewresearch.com/industry-analysis/insulation-market Search in Google Scholar

FORTUNE. Polyethylene Terephthalate (PET) Market Size, Share & Industry Analysis, By Type (Virgin and Recycled), Application (Rigid Packaging, Film, Sheets & Straps, and Others), and Regional Forecast, 2024–2032. [Online]. [Accessed: 20.12.2024]. Available: https://www.fortunebusinessinsights.com/industry-reports/polyethylene-terephthalate-pet-market-101743 Search in Google Scholar

DATAINTELO. Recycled Cotton Yarn Market. [Online]. [Accessed: 21.12.2024]. Available: https://dataintelo.com/report/global-recycled-cotton-yarn-market Search in Google Scholar

Matayeva A., Biller P. Hydrothermal liquefaction of post-consumer mixed textile waste for recovery of bio-oil and terephthalic acid. Resour. Conserv. Recycl. 2022:185:106502. https://doi.org/10.1016/j.resconrec.2022.106502 Search in Google Scholar

Sulochani R. M. N., Jayasinghe R. A., Priyadarshana G., Nilmini A. H. L. R., Ashokcline M., Dharmaratne P. D. Waste-based composites using post-industrial textile waste and packaging waste from the textile manufacturing industry for non-structural applications. Sustain. Chem. Environ. 2024:8:100163. https://doi.org/10.1016/j.scenv.2024.100163 Search in Google Scholar

Mohan S., Thilagavathi G., Rajkhowa R. Development of micro dust reinforced composite for building applications. J. Clean. Prod. 2024:470:143244. https://doi.org/10.1016/j.jclepro.2024.143244 Search in Google Scholar

Kamble Z., Behera B. K. Sustainable hybrid composites reinforced with textile waste for construction and building applications. Constr. Build. Mater. 2021:284:122800. https://doi.org/10.1016/j.conbuildmat.2021.122800 Search in Google Scholar

Rakhsh Mahpour A., Ventura H., Ardanuy M., Rosell J. R., Claramunt J. The effect of fibres and carbonation conditions on the mechanical properties and microstructure of lime/flax composites. Cem. Concr. Compos. 2023:138:104981. https://doi.org/10.1016/j.cemconcomp.2023.104981 Search in Google Scholar

Suthatho A., Rattanawongkun P., Tawichai N., Tanpichai S., Boonmahitthisud A., Soykeabkaew N. Low-density all-cellulose composites made from cotton textile waste with promising thermal insulation and acoustic absorption properties. ACS Appl. Polym. Mater. 2024:6(1):390–397. https://doi.org/10.1021/acsapm.3c02076 Search in Google Scholar

Kamble Z., Behera B. K. Fabrication and performance evaluation of waste cotton and polyester fiber-reinforced green composites for building and construction applications. Polym. Compos. 2021:42(6):3025–3037. https://doi.org/10.1002/pc.26036 Search in Google Scholar

Dev B., Rahman M. A., Tazrin T., Islam M. S., Datta A., Rahman M. Z. Investigation of mechanical properties of nonwoven recycled cotton/PET fiber-reinforced polyester hybrid composites. Macromol. Mater. Eng. 2024:309(6):2400020. https://doi.org/10.1002/mame.202400020 Search in Google Scholar

Zhou W., Huang H., Du S., Wang Q., He J., Cui S. Facile fabrication of polyester filament fabric with highly and durable hydrophilic surface by microwave-assisted glycolysis. J. Appl. Polym. Sci. 2016:133(40):app.44069. https://doi.org/10.1002/app.44069 Search in Google Scholar

Ruiz A., Cogdell C., Mak J., Rowe A., Wan S., La Saponara V. Valorization and biorefinery of local agricultural and textile wastes through mycelium composites for structural applications. Res. Dir. Biotechnol. Des. 2024:2:e10. https://doi.org/10.1017/btd.2024.8 Search in Google Scholar

Saini R., Kaur G., Brar S. K. Textile residue-based mycelium biocomposites from Pleurotus ostreatus. Mycology 2024:15(4):683–689. https://doi.org/10.1080/21501203.2023.2278308 Search in Google Scholar

Jiang L., Walczyk D., McIntyre G. A new approach to manufacturing biocomposite sandwich structures: Investigation of preform shell behavior. J. Manuf. Sci. Eng. 2017:139(2):021014. https://doi.org/10.1115/1.4034278 Search in Google Scholar

Jiang L., Walczyk D., McIntyre G., Bucinell R., Li B. Bioresin infused then cured mycelium-based sandwich-structure biocomposites: Resin transfer molding (RTM) process, flexural properties, and simulation. J. Clean. Prod. 2019:207:123–135. https://doi.org/10.1016/j.jclepro.2018.09.255 Search in Google Scholar

Jiang L., Walczyk D., McIntyre G., Bucinell R., Tudryn G. Manufacturing of biocomposite sandwich structures using mycelium-bound cores and preforms. J. Manuf. Process. 2017:28:50–59. https://doi.org/10.1016/j.jmapro.2017.04.029 Search in Google Scholar

Jiang L., Walczyk D. F., Li B. Modeling of glue penetration into natural fiber reinforcements by roller infusion. J. Manuf. Sci. Eng. 2018:140(4):041006. https://doi.org/10.1115/1.4038514 Search in Google Scholar

Nagappan S., et al. Catalytic hydrothermal liquefaction of biomass into bio-oils and other value-added products – A review. Fuel 2021:285:119053. https://doi.org/10.1016/j.fuel.2020.119053 Search in Google Scholar

InsulationGo. What is thermal conductivity? [Online]. [Accessed: 16.01.2024]. Available: https://insulationgo.co.uk/thermal-conductivity/ Search in Google Scholar

Lowry P. P., Wagner K. A. Hydrothermal liquefaction treatment hazard analysis report. PNNL--24219 Rev 3, 1406834. Sep. 2016. https://doi.org/10.2172/1406834 Search in Google Scholar

Asmatulu E., Alonayni A., Alamir M. Safety concerns in composite manufacturing and machining. In: Naguib H. E., ed. Behavior and Mechanics of Multifunctional Materials and Composites XII. Denver, United States: SPIE; Mar. 2018:68. https://doi.org/10.1117/12.2296707 Search in Google Scholar

Beigzadeh Z., Pourhassan B., Kalantary S., Golbabaei F. Occupational exposure to wood dust and risk of nasopharyngeal cancer: A systematic review and meta-analysis. Environ. Res. 2019:171:170–176. https://doi.org/10.1016/j.envres.2018.12.022 Search in Google Scholar

European Chemicals Agency (ECHA). Ethane-1,2-diol. [Online]. [Accessed: 19.01.2025]. https://echa.europa.eu/lv/substance-information/-/substanceinfo/100.003.159 Search in Google Scholar

Balaeș T., Radu B.-M., Tănase C. Mycelium-composite materials – A promising alternative to plastics? J. Fungi 2023:9(2):210. https://doi.org/10.3390/jof9020210 Search in Google Scholar

Baxi S. N., et al. Exposure and health effects of fungi on humans. J. Allergy Clin. Immunol. Pract. 2016:4(3):396–404. https://doi.org/10.1016/j.jaip.2016.01.008 Search in Google Scholar

Higgins C., Margot H., Warnquist S., Obeysekare E., Mehta K. Mushroom cultivation in the developing world: A comparison of cultivation technologies. In: 2017 IEEE Global Humanitarian Technology Conference (GHTC). San Jose, 2017:1–7 Search in Google Scholar

Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Life Sciences, other