Open Access

Environmentally Friendly Extraction of Bioactive Compounds from Spruce and Pine Needles to Obtain Extracts with Antioxidant and Antimicrobial Activity

, , , ,  and   
Jun 09, 2025

Cite
Download Cover

Investment and Development Agency of Latvia. Forest Industry. 2022. [Online]. [Accessed 15.01.2025]. Available: https://www.liaa.gov.lv/en/trade/industries/forest?utm_source=https%3A%2F%2F Search in Google Scholar

Picot-Allain C., Mahomoodally M. F., Ak G., Zengin G. Conventional versus green extraction techniques – a comparative perspective. Current Opinion in Food Science 2021:40:144–56. https://doi.org/10.1016/j.cofs.2021.02.009 Search in Google Scholar

Usman M., Nakagawa M., Cheng S. Emerging Trends in Green Extraction Techniques for Bioactive Natural Products. Processes 2023:11(12):3444. https://doi.org/10.3390/pr11123444 Search in Google Scholar

Metsämuuronen S., Sirén H. Bioactive phenolic compounds, metabolism and properties: a review on valuable chemical compounds in Scots pine and Norway spruce. Phytochemistry Reviews 2019:18:623–64. https://doi.org/10.1007/s11101-019-09630-2 Search in Google Scholar

Lim M. W., Quan Tang Y., Aroua M. K., Gew L. T. Glycerol Extraction of Bioactive Compounds from Thanaka (Hesperethusa crenulata) Bark through LCMS Profiling and Their Antioxidant Properties. American Chemical Society Omega 2024:9:14388–405. https://doi.org/10.1021/acsomega.4c00041 Search in Google Scholar

Anis M., Ahmed D., Anis N. Green extraction of bioactive compounds from Azadirachta indica in aqueous glycerol and modelling and optimisation by response surface methodology. Folia Horticulturae 2022:34:249–62. https://doi.org/10.2478/fhort-2022-0019 Search in Google Scholar

Nikolić V. G., Troter D. Z., Savić I. M., Savić Gajić I. M., Zvezdanović J. B., Konstantinović I. B., Konstantinović S. S. Design and optimization of “greener” and sustainable ultrasound-assisted extraction of valuable bioactive compounds from common centaury (Centaurium erythraea Rafn) aerial parts: A comparative study using aqueous propylene glycol and ethanol. Industrial Crops and Products 2023:192:116070. https://doi.org/10.1016/j.indcrop.2022.116070 Search in Google Scholar

Wang L., Cao S., Guo G., Hu Y., Li J., Fang X., Zhao L. Simultaneous extraction of total polyphenols and triterpenes from leaves of Celtis sinensis by deep eutectic solvent hybrid system combined with response surface methodology. New Journal of Chemistry 2022:46:22581–92. https://doi.org/10.1039/d2nj04936h Search in Google Scholar

Szwajkowska-Michałek L., Przybylska-Balcerek A., Rogoziński T., Stuper-Szablewska K. Phenolic compounds in trees and shrubs of central Europe. Applied Sciences (Switzerland) 2020:10:1–24. https://doi.org/10.3390/app10196907 Search in Google Scholar

Purmalis O., Klavins L., Niedrite E., Mezulis M., Klavins M. Invasive Plants as a Source of Polyphenols with High Radical Scavenging Activity. Plants 2025:14(3):467. https://doi.org/10.3390/plants14030467 Search in Google Scholar

Xiao F., Xu T., Lu B., Liu R. Guidelines for antioxidant assays for food components. Food Frontiers 2020:1(1):60–69. https://doi.org/10.1002/fft2.10 Search in Google Scholar

Silva-Beltrán N. P., Ruiz-Cruz S., Cira-Chávez L. A., Estrada-Alvarado M. I., Ornelas-Paz J. D. J., López-Mata M. A., Del-Toro-Sánchez C. L., Ayala-Zavala J. F., Márquez-Ríos E. Total Phenolic, Flavonoid, Tomatine, and Tomatidine Contents and Antioxidant and Antimicrobial Activities of Extracts of Tomato Plant. International Journal of Analytical Chemistry 2015. https://doi.org/10.1155/2015/284071 Search in Google Scholar

Sari K. R. P., Ikawati Z., Danarti R., Hertiani T. Micro-titer plate assay for measurement of total phenolic and total flavonoid contents in medicinal plant extracts. Arabian Journal of Chemistry 2023:16(9):105003. https://doi.org/10.1016/j.arabjc.2023.105003 Search in Google Scholar

Shraim A. M., Ahmed T. A., Rahman M. M., Hijji Y. M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. Food Science and Technology 2021:150:111932. https://doi.org/10.1016/j.lwt.2021.111932 Search in Google Scholar

Klavins L., Perkons I., Mezulis M., Viksna A., Klavins M. Procyanidins from Cranberry Press Residues – Extraction Optimization, Purification and Characterization. Plants 2022:11(24):3517. https://doi.org/10.3390/plants11243517 Search in Google Scholar

Prior R. L., Fan E., Ji H., Howell A., Nio C., Paynef M. J., Reed J. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders. Journal of the Science of Food and Agriculture 2010:90:1473–1478. https://doi.org/10.1002/jsfa.3966 Search in Google Scholar

Hurshkainen T. V., Terentyev V. I., Skripova N. N., Nikonova N. N., Korolyova A. A. Khimicheskiy sostav otkhodov pererabotki khvoynogo syr’ya (Chemical composition of by-products of coniferous raw materials processing). Khimiya Rastitelnogo Syrya 2019:233–239. https://doi.org/10.14258/jcprm.2019014264 (In Russian). Search in Google Scholar

Angelis A., Hubert J., Aligiannis N., Michalea R., Abedini A., Nuzillard J. M., Gangloff S. C., Skaltsounis A. L., Renault J. H. Bio-guided isolation of methanol-soluble metabolites of common spruce (Picea abies) bark by-products and investigation of their dermo-cosmetic properties. Molecules 2016:21(11):1586. https://doi.org/10.3390/molecules21111586 Search in Google Scholar

Prior B. A., Hohmann S. Glycerol Production and Osmoregulation. In Yeast Sugar Metabolism. Chemical Rubber Company Press, 2024:313–37. https://doi.org/10.1201/9781003578987-17 Search in Google Scholar

Wiegand T. J. Propylene glycol. In Encyclopedia of Toxicology, Fourth Edition. Elsevier, 2023:7:981–986. https://doi.org/10.1016/B978-0-12-824315-2.01179-9 Search in Google Scholar

Husna M., Tabak Y., Yıldız M. Glycerol as a Feedstock for Chemical Synthesis. Chemical and Biochemical Engineering Reviews 2024:11(5). https://doi.org/10.1002/cben.202400010 Search in Google Scholar

Pedersen L. K., Jemec G. B. E. Plasticising effect of water and glycerin on human skin in vivo. Journal of Dermatological Science 1999:19:48–52. https://doi.org/10.1016/S0923-1811(98)00050-4 Search in Google Scholar

Borówka G., Semerjak G., Krasodomski W., Lubowicz J. Purified Glycerine from Biodiesel Production as Biomass or Waste-Based Green Raw Material for the Production of Biochemicals. Energies (Basel) 2023:16(13):4889. https://doi.org/10.3390/en16134889 Search in Google Scholar

Fiume M. M., Bergfeld W. F., Belsito D. V., Hill R. A., Klaassen C. D., Liebler D., Marks J. G., Shank R. C., Slaga T. J., Snyder P. W., Andersen F. A. Safety Assessment of Propylene Glycol, Tripropylene Glycol, and PPGs as Used in Cosmetics. International Journal of Toxicology 2012:31:245S–260S. https://doi.org/10.1177/1091581812461381 Search in Google Scholar

Wiegand T. J. Propylene glycol. Encyclopedia of Toxicology, Fourth Edition. Elsevier, 2023:7:981–986. https://doi.org/10.1016/B978-0-12-824315-2.01179-9 Search in Google Scholar

Issa N. A. Evaluation the Antimicrobial Activity of Essential Oils against Veterinary Pathogens, Multidrug-resistant Bacteria and Dermatophytes. Pakistan Veterinary Journal 2024:44:260–265. https://doi.org/10.29261/pakvetj/2024.165 Search in Google Scholar

Willför S., Nisula L., Hemming J., Reunanen M., Holmbom B. Bioactive phenolic substances in industrially important tree species. Part 1: Knots and stemwood of different spruce species. Holzforschung 2004:58(4):335–344. https://doi.org/10.1515/HF.2004.052 Search in Google Scholar

Holmbom B., Willfoer S., Hemming J., Pietarinen S., Nisula L., Eklund P., Sjoeholm R. Knots in trees: A rich source of bioactive polyphenols. American Chemical Society Symposium Series 2007:350–62. https://doi.org/10.1021/bk-2007-0954.ch022 Search in Google Scholar

Micek S. T. Alternatives to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clinical Infectious Diseases 2007:45(3):S184–S190. https://doi.org/10.1086/519471 Search in Google Scholar

Hiramatsu K., Hanaki H., Ino T., Yabuta K., Oguri T., Tenover F. C. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. Journal of Antimicrobial Chemotherapy 1997:40(1):135–136. https://doi.org/10.1093/jac/40.1.135 Search in Google Scholar

Sader H. S., Fritsche T. R., Jones R. N. In vitro activity of garenoxacin tested against a worldwide collection of ciprofloxacin-susceptible and ciprofloxacin-resistant Enterobacteriaceae strains (1999–2004). Diagnostic Microbiology and Infectious Disease 2007:58(1):27–32. https://doi.org/10.1016/j.diagmicrobio.2006.12.006 Search in Google Scholar

Gunell M., Webber M. A., Kotilainen P., Lilly A. J., Caddick J. M., Jalava J., Huovinen P., Siitonen A., Hakanen A. J., Piddock L. J. V. Mechanisms of resistance in nontyphoidal Salmonella enterica strains exhibiting a nonclassical quinolone resistance phenotype. Antimicrobial Agents and Chemotherapy 2009:53:3832–6. https://doi.org/10.1128/AAC.00121-09 Search in Google Scholar

Alneama R. T., Al-Massody A. J., Mahmud B. M., Ghasemian A. The existence and expression of aminoglycoside resistance genes among multidrug-resistant Escherichia coli isolates in intensive care unit centers. Gene Reports 2021:25:101315. https://doi.org/10.1016/j.genrep.2021.101315 Search in Google Scholar

Alakomi H. L., Puupponen-Pimiä R., Aura A. M., Helander I. M., Nohynek L., Oksman-Caldentey K. M., Saarela M. Weakening of Salmonella with selected microbial metabolites of berry-derived phenolic compounds and organic acids. Journal of Agricultural and Food Chemistry 2007:55(10). https://doi.org/10.1021/jf070190y Search in Google Scholar

Haichour N., Mezaache-Aichour S., Khenchouche A., Melouli H., Natrah F. M. I., Zerroug M. M. Antiviral, Antibacterial and Anti-Quorum Sensing Activities of a Lyophilized Aqueous Pine Resin Extract. Phytotherapie 2022:20:180–91. https://doi.org/10.3166/phyto-2021-0283 Search in Google Scholar

Pfaller M. A., Diekema D. J. Epidemiology of invasive candidiasis: A persistent public health problem. Clinical Microbiology Reviews 2007:20:133–63. https://doi.org/10.1128/CMR.00029-06 Search in Google Scholar

Pappas P. G., Kauffman C. A, Andes D. R., Clancy C. J., Marr K. A., Ostrosky-Zeichner L., Reboli A. C., Schuster M. G., Vazquez J. A., Walsh T. J., Zaoutis T. E., Sobel J. D. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases 2015:62(4):e1–e50. https://doi.org/10.1093/cid/civ933 Search in Google Scholar

Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Life Sciences, other