This work is licensed under the Creative Commons Attribution 4.0 International License.
Investment and Development Agency of Latvia. Forest Industry. 2022. [Online]. [Accessed 15.01.2025]. Available: https://www.liaa.gov.lv/en/trade/industries/forest?utm_source=https%3A%2F%2FSearch in Google Scholar
Picot-Allain C., Mahomoodally M. F., Ak G., Zengin G. Conventional versus green extraction techniques – a comparative perspective. Current Opinion in Food Science 2021:40:144–56. https://doi.org/10.1016/j.cofs.2021.02.009Search in Google Scholar
Usman M., Nakagawa M., Cheng S. Emerging Trends in Green Extraction Techniques for Bioactive Natural Products. Processes 2023:11(12):3444. https://doi.org/10.3390/pr11123444Search in Google Scholar
Metsämuuronen S., Sirén H. Bioactive phenolic compounds, metabolism and properties: a review on valuable chemical compounds in Scots pine and Norway spruce. Phytochemistry Reviews 2019:18:623–64. https://doi.org/10.1007/s11101-019-09630-2Search in Google Scholar
Lim M. W., Quan Tang Y., Aroua M. K., Gew L. T. Glycerol Extraction of Bioactive Compounds from Thanaka (Hesperethusa crenulata) Bark through LCMS Profiling and Their Antioxidant Properties. American Chemical Society Omega 2024:9:14388–405. https://doi.org/10.1021/acsomega.4c00041Search in Google Scholar
Anis M., Ahmed D., Anis N. Green extraction of bioactive compounds from Azadirachta indica in aqueous glycerol and modelling and optimisation by response surface methodology. Folia Horticulturae 2022:34:249–62. https://doi.org/10.2478/fhort-2022-0019Search in Google Scholar
Nikolić V. G., Troter D. Z., Savić I. M., Savić Gajić I. M., Zvezdanović J. B., Konstantinović I. B., Konstantinović S. S. Design and optimization of “greener” and sustainable ultrasound-assisted extraction of valuable bioactive compounds from common centaury (Centaurium erythraea Rafn) aerial parts: A comparative study using aqueous propylene glycol and ethanol. Industrial Crops and Products 2023:192:116070. https://doi.org/10.1016/j.indcrop.2022.116070Search in Google Scholar
Wang L., Cao S., Guo G., Hu Y., Li J., Fang X., Zhao L. Simultaneous extraction of total polyphenols and triterpenes from leaves of Celtis sinensis by deep eutectic solvent hybrid system combined with response surface methodology. New Journal of Chemistry 2022:46:22581–92. https://doi.org/10.1039/d2nj04936hSearch in Google Scholar
Szwajkowska-Michałek L., Przybylska-Balcerek A., Rogoziński T., Stuper-Szablewska K. Phenolic compounds in trees and shrubs of central Europe. Applied Sciences (Switzerland) 2020:10:1–24. https://doi.org/10.3390/app10196907Search in Google Scholar
Purmalis O., Klavins L., Niedrite E., Mezulis M., Klavins M. Invasive Plants as a Source of Polyphenols with High Radical Scavenging Activity. Plants 2025:14(3):467. https://doi.org/10.3390/plants14030467Search in Google Scholar
Xiao F., Xu T., Lu B., Liu R. Guidelines for antioxidant assays for food components. Food Frontiers 2020:1(1):60–69. https://doi.org/10.1002/fft2.10Search in Google Scholar
Silva-Beltrán N. P., Ruiz-Cruz S., Cira-Chávez L. A., Estrada-Alvarado M. I., Ornelas-Paz J. D. J., López-Mata M. A., Del-Toro-Sánchez C. L., Ayala-Zavala J. F., Márquez-Ríos E. Total Phenolic, Flavonoid, Tomatine, and Tomatidine Contents and Antioxidant and Antimicrobial Activities of Extracts of Tomato Plant. International Journal of Analytical Chemistry 2015. https://doi.org/10.1155/2015/284071Search in Google Scholar
Sari K. R. P., Ikawati Z., Danarti R., Hertiani T. Micro-titer plate assay for measurement of total phenolic and total flavonoid contents in medicinal plant extracts. Arabian Journal of Chemistry 2023:16(9):105003. https://doi.org/10.1016/j.arabjc.2023.105003Search in Google Scholar
Shraim A. M., Ahmed T. A., Rahman M. M., Hijji Y. M. Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. Food Science and Technology 2021:150:111932. https://doi.org/10.1016/j.lwt.2021.111932Search in Google Scholar
Klavins L., Perkons I., Mezulis M., Viksna A., Klavins M. Procyanidins from Cranberry Press Residues – Extraction Optimization, Purification and Characterization. Plants 2022:11(24):3517. https://doi.org/10.3390/plants11243517Search in Google Scholar
Prior R. L., Fan E., Ji H., Howell A., Nio C., Paynef M. J., Reed J. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders. Journal of the Science of Food and Agriculture 2010:90:1473–1478. https://doi.org/10.1002/jsfa.3966Search in Google Scholar
Hurshkainen T. V., Terentyev V. I., Skripova N. N., Nikonova N. N., Korolyova A. A. Khimicheskiy sostav otkhodov pererabotki khvoynogo syr’ya (Chemical composition of by-products of coniferous raw materials processing). Khimiya Rastitel’nogo Syr’ya 2019:233–239. https://doi.org/10.14258/jcprm.2019014264 (In Russian).Search in Google Scholar
Angelis A., Hubert J., Aligiannis N., Michalea R., Abedini A., Nuzillard J. M., Gangloff S. C., Skaltsounis A. L., Renault J. H. Bio-guided isolation of methanol-soluble metabolites of common spruce (Picea abies) bark by-products and investigation of their dermo-cosmetic properties. Molecules 2016:21(11):1586. https://doi.org/10.3390/molecules21111586Search in Google Scholar
Prior B. A., Hohmann S. Glycerol Production and Osmoregulation. In Yeast Sugar Metabolism. Chemical Rubber Company Press, 2024:313–37. https://doi.org/10.1201/9781003578987-17Search in Google Scholar
Wiegand T. J. Propylene glycol. In Encyclopedia of Toxicology, Fourth Edition. Elsevier, 2023:7:981–986. https://doi.org/10.1016/B978-0-12-824315-2.01179-9Search in Google Scholar
Husna M., Tabak Y., Yıldız M. Glycerol as a Feedstock for Chemical Synthesis. Chemical and Biochemical Engineering Reviews 2024:11(5). https://doi.org/10.1002/cben.202400010Search in Google Scholar
Pedersen L. K., Jemec G. B. E. Plasticising effect of water and glycerin on human skin in vivo. Journal of Dermatological Science 1999:19:48–52. https://doi.org/10.1016/S0923-1811(98)00050-4Search in Google Scholar
Borówka G., Semerjak G., Krasodomski W., Lubowicz J. Purified Glycerine from Biodiesel Production as Biomass or Waste-Based Green Raw Material for the Production of Biochemicals. Energies (Basel) 2023:16(13):4889. https://doi.org/10.3390/en16134889Search in Google Scholar
Fiume M. M., Bergfeld W. F., Belsito D. V., Hill R. A., Klaassen C. D., Liebler D., Marks J. G., Shank R. C., Slaga T. J., Snyder P. W., Andersen F. A. Safety Assessment of Propylene Glycol, Tripropylene Glycol, and PPGs as Used in Cosmetics. International Journal of Toxicology 2012:31:245S–260S. https://doi.org/10.1177/1091581812461381Search in Google Scholar
Wiegand T. J. Propylene glycol. Encyclopedia of Toxicology, Fourth Edition. Elsevier, 2023:7:981–986. https://doi.org/10.1016/B978-0-12-824315-2.01179-9Search in Google Scholar
Issa N. A. Evaluation the Antimicrobial Activity of Essential Oils against Veterinary Pathogens, Multidrug-resistant Bacteria and Dermatophytes. Pakistan Veterinary Journal 2024:44:260–265. https://doi.org/10.29261/pakvetj/2024.165Search in Google Scholar
Willför S., Nisula L., Hemming J., Reunanen M., Holmbom B. Bioactive phenolic substances in industrially important tree species. Part 1: Knots and stemwood of different spruce species. Holzforschung 2004:58(4):335–344. https://doi.org/10.1515/HF.2004.052Search in Google Scholar
Holmbom B., Willfoer S., Hemming J., Pietarinen S., Nisula L., Eklund P., Sjoeholm R. Knots in trees: A rich source of bioactive polyphenols. American Chemical Society Symposium Series 2007:350–62. https://doi.org/10.1021/bk-2007-0954.ch022Search in Google Scholar
Micek S. T. Alternatives to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clinical Infectious Diseases 2007:45(3):S184–S190. https://doi.org/10.1086/519471Search in Google Scholar
Hiramatsu K., Hanaki H., Ino T., Yabuta K., Oguri T., Tenover F. C. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. Journal of Antimicrobial Chemotherapy 1997:40(1):135–136. https://doi.org/10.1093/jac/40.1.135Search in Google Scholar
Sader H. S., Fritsche T. R., Jones R. N. In vitro activity of garenoxacin tested against a worldwide collection of ciprofloxacin-susceptible and ciprofloxacin-resistant Enterobacteriaceae strains (1999–2004). Diagnostic Microbiology and Infectious Disease 2007:58(1):27–32. https://doi.org/10.1016/j.diagmicrobio.2006.12.006Search in Google Scholar
Gunell M., Webber M. A., Kotilainen P., Lilly A. J., Caddick J. M., Jalava J., Huovinen P., Siitonen A., Hakanen A. J., Piddock L. J. V. Mechanisms of resistance in nontyphoidal Salmonella enterica strains exhibiting a nonclassical quinolone resistance phenotype. Antimicrobial Agents and Chemotherapy 2009:53:3832–6. https://doi.org/10.1128/AAC.00121-09Search in Google Scholar
Alneama R. T., Al-Massody A. J., Mahmud B. M., Ghasemian A. The existence and expression of aminoglycoside resistance genes among multidrug-resistant Escherichia coli isolates in intensive care unit centers. Gene Reports 2021:25:101315. https://doi.org/10.1016/j.genrep.2021.101315Search in Google Scholar
Alakomi H. L., Puupponen-Pimiä R., Aura A. M., Helander I. M., Nohynek L., Oksman-Caldentey K. M., Saarela M. Weakening of Salmonella with selected microbial metabolites of berry-derived phenolic compounds and organic acids. Journal of Agricultural and Food Chemistry 2007:55(10). https://doi.org/10.1021/jf070190ySearch in Google Scholar
Haichour N., Mezaache-Aichour S., Khenchouche A., Melouli H., Natrah F. M. I., Zerroug M. M. Antiviral, Antibacterial and Anti-Quorum Sensing Activities of a Lyophilized Aqueous Pine Resin Extract. Phytotherapie 2022:20:180–91. https://doi.org/10.3166/phyto-2021-0283Search in Google Scholar
Pfaller M. A., Diekema D. J. Epidemiology of invasive candidiasis: A persistent public health problem. Clinical Microbiology Reviews 2007:20:133–63. https://doi.org/10.1128/CMR.00029-06Search in Google Scholar
Pappas P. G., Kauffman C. A, Andes D. R., Clancy C. J., Marr K. A., Ostrosky-Zeichner L., Reboli A. C., Schuster M. G., Vazquez J. A., Walsh T. J., Zaoutis T. E., Sobel J. D. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clinical Infectious Diseases 2015:62(4):e1–e50. https://doi.org/10.1093/cid/civ933Search in Google Scholar