Open Access

Carrier Material and Microbial Selection for Enhanced Methane Production in Ex-Situ Biomethanation

, ,  and   
Dec 30, 2024

Cite
Download Cover

Plana P. V., Noche B. A review of the current digestate distribution models: storage and transport. Presented at the Waste management 2016, Valencia, Spain, Jun. 2016:345–357. https://doi.org/10.2495/WM160311Search in Google Scholar

Fetting C. The European Green Deal, ESDN Office, Vienna, 2020.Search in Google Scholar

Inaba R., Nagoya M., Kouzuma A., Watanabe K. Metatranscriptomic Evidence for Magnetite Nanoparticle-Stimulated Acetoclastic Methanogenesis under Continuous Agitation. Appl Environ Microbiol 2019:85(23). https://doi.org/10.1128/AEM.01733-19Search in Google Scholar

Conrad R., Claus P., Casperb P. Stable isotope fractionation during the methanogenic degradation of organic matter in the sediment of an acidic bog lake, Lake Grosse Fuchskuhle. Limnology & Oceanography 2010:55(5):1932–1942. https://doi.org/10.4319/lo.2010.55.5.1932Search in Google Scholar

Galand P. E., Yrjälä K., Conrad R. Stable carbon isotope fractionation during methanogenesis in three boreal peatland ecosystems. Biogeosciences 2010:7(11):3893–3900. https://doi.org/10.5194/bg-7-3893-2010Search in Google Scholar

Bumbiere K., Diaz Sanchez F. A., Pubule J., Blumberga D. Development and Assessment of Carbon Farming Solutions. Environmental and Climate Technologies 2022:26(1):898–916. https://doi.org/10.2478/rtuect-2022-0068Search in Google Scholar

Lawson N., Alvarado-Morales M., Tsapekos P., Angelidaki I. Techno-Economic Assessment of Biological Biogas Upgrading Based on Danish Biogas Plants. Energies 2021:14(24):8252. https://doi.org/10.3390/en14248252Search in Google Scholar

Akhlaghi N., Najafpour-Darzi G. A comprehensive review on biological hydrogen production. International Journal of Hydrogen Energy 2020:45(43):22492–22512. https://doi.org/10.1016/j.ijhydene.2020.06.182Search in Google Scholar

Antukh T., Lee I., Joo S., Kim H. Hydrogenotrophs-Based Biological Biogas Upgrading Technologies. Front. Bioeng. Biotechnol. 2022:10:833482. https://doi.org/10.3389/fbioe.2022.833482Search in Google Scholar

Jensen M. B., Poulsen S., Jensen B., Feilberg A., Kofoed M. V. W. Selecting carrier material for efficient biomethanation of industrial biogas-CO2 in a trickle-bed reactor. Journal of CO2 Utilization 2021:51:101611. https://doi.org/10.1016/j.jcou.2021.101611Search in Google Scholar

Sekoai P. T. et al. Microbial cell immobilization in biohydrogen production: a short overview. Critical Reviews in Biotechnology 2018:38(2):157–171. https://doi.org/10.1080/07388551.2017.1312274Search in Google Scholar

Kourkoutas Y., Bekatorou A., Banat I. M., Marchant R., Koutinas A. A. Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology 2004:21(4):377–397. https://doi.org/10.1016/j.fm.2003.10.005Search in Google Scholar

Ashraf M. T., Triolo J. M., Yde L. Assay for testing packing materials for ex-situ bio-methanation. 2020Search in Google Scholar

Taurino R. et al. New composite materials based on glass waste. Composites Part B: Engineering 2013:45(1):497–503. https://doi.org/10.1016/j.compositesb.2012.09.017Search in Google Scholar

Green Gravels. [Online]. [Accessed 06.09.2023]. Available: https://gravels.ee/en/foam-glass-gravel/Search in Google Scholar

Kusnere Z., Spalvins K., Bataitis M. Wood Ash Filter Material Characterization as a Carrier Material for Ex-Situ Biomethanation of Biogas in Biotrickling Filter Reactors. Environmental and Climate Technologies 2023:27(1):92–102. https://doi.org/10.2478/rtuect-2023-0008Search in Google Scholar

Hernández J., Lafuente J., Prado Ó. J., Gabriel D. Startup and long-term performance of biotrickling filters packed with polyurethane foam and poplar wood chips treating a mixture of ethylmercaptan, H 2 S, and NH 3. Journal of the Air & Waste Management Association 2013:63(4):462–471. https://doi.org/10.1080/10962247.2013.763305Search in Google Scholar

Spyridonidis A., Vasiliadou I. A., Stathopoulou P., Tsiamis A., Tsiamis G., Stamatelatou K. Enrichment of Microbial Consortium with Hydrogenotrophic Methanogens for Biological Biogas Upgrade to Biomethane in a Bubble Reactor under Mesophilic Conditions. Sustainability 2023:15(21):15247. https://doi.org/10.3390/su152115247Search in Google Scholar

Smith N. W., Shorten P. R., Altermann E. H., Roy N. C., McNabb W. C. Hydrogen cross-feeders of the human gastrointestinal tract. Gut Microbes 2019:10(3):270–288. https://doi.org/10.1080/19490976.2018.1546522.Search in Google Scholar

Worakit S., Boone D. R., Mah R. A., Abdel-Samie M.-E., El-Halwagi M. M. Methanobacterium alcaliphilum sp. nov., an H2-Utilizing Methanogen That Grows at High pH Values. International Journal of Systematic Bacteriology 1986:36(3):380–382. https://doi.org/10.1099/00207713-36-3-380Search in Google Scholar

Ahmad J. et al. A Step towards Sustainable Self-Compacting Concrete by Using Partial Substitution of Wheat Straw Ash and Bentonite Clay Instead of Cement. Sustainability 2021:13(2):824. https://doi.org/10.3390/su13020824Search in Google Scholar

Kusnere Z., Spalvins K., Blumberga D., Veidenbergs I. Packing materials for biotrickling filters used in biogas upgrading – biomethanation. Agronomy Research 2021:19. https://doi.org/10.15159/AR.21.082Search in Google Scholar

Boone D. R., Worakit S., Mathrani I. M., Mah R. A. Alkaliphilic methanogens from high-pH lake sediments. Systematic and Applied Microbiology 1986:7(2–3):230–234. https://doi.org/10.1016/S0723-2020(86)80011-XSearch in Google Scholar

Kusnere Z., Rupeika D., Spalvins K., Mika T. Turning Trash into Treasure: The Use of Vulcanized Ash Filters and Glass Waste for Renewable Energy. Environmental and Climate Technologies 2023:27(1):1049–1060. https://doi.org/10.2478/rtuect-2023-0076Search in Google Scholar

Waldow V. Redox reactions involving resazurin, resorufin, and dihydroresorufin. Wikimedia, 2019.Search in Google Scholar

DSMZ. Cultivation of Anaerobes. Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH.Search in Google Scholar

Angelidaki I. et al. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology 2009:59(5):927–934. https://doi.org/10.2166/wst.2009.040Search in Google Scholar

Amodeo C. et al. How Different Are Manometric, Gravimetric, and Automated Volumetric BMP Results? Water 2020:12(6):1839. https://doi.org/10.3390/w12061839Search in Google Scholar

Cord-Ruwisch R., Mercz T. I., Hoh C.-Y., Strong G. E. Dissolved hydrogen concentration as an on-line control parameter for the automated operation and optimization of anaerobic digesters. Biotechnol. Bioeng. 1997:56(6):626–634. https://doi.org/10.1002/(SICI)1097-0290(19971220)56:6<626::AID-BIT5>3.0.CO;2-PSearch in Google Scholar

Hafner S. D. et al. Calculation of Methane Production from Manometric Measurements. Standard BMP Methods document 201, version 2.6. Available: https://www.dbfz.de/en/BMP (accessed on April 19, 2020).Search in Google Scholar

Chimenos J. M., Fernández A. I., Nadal R., Espiell F. Short-term natural weathering of MSWI bottom ash. Journal of Hazardous Materials 2000:79(3):287–299. https://doi.org/10.1016/S0304-3894(00)00270-3Search in Google Scholar

Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Life Sciences, other