Open Access

Search for Alternative Raw Materials for Pellet Production – a Preliminary Study

, , , ,  and   
Nov 13, 2024

Cite
Download Cover

Flach B., Bolla S. EU Wood Pellet Annual, Report E42022-0049, FAS GAIN, July 2022. Search in Google Scholar

Bioenergy Europe. Policy Brief: Pellets. Bioenergy Europe Statistical Report 2024. [Online]. [Accessed 08.10.2024]. Available: https://bioenergyeurope.org/wp-content/uploads/2024/06/Pellets_Policy-Brief24.pdf Search in Google Scholar

Central Statistical Bureau of Latvia. Production, imports, exports and consumption of fuelwood by its type, in natural units (NACE Rev.2) 2008–2022. [Online]. [Accessed 08.10.2024]. Available: https://stat.gov.lv/en/statistics-themes/business-sectors/energy/tables/ena030-production-imports-exports-and-consumption Search in Google Scholar

Central Statistical Bureau of Latvia, “Exports by commodity type, 44013100 Wood pellets.” Accessed: Dec. 21, 2023. [Online]. [Accessed 21.12.2023]. Available: https://eksports.csb.gov.lv/en/years/products-selected/export/2005-2023-2016/TOTAL-IX-44-4401-440131/TOTAL Search in Google Scholar

Central Statistics Bureau of Latvia. Average prices of energy resources for final consumers (excluding VAT) 2006-2023. [Online]. [Accessed 08.10.2024]. Available: https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__NOZ__EN__ENC/ENC010/ Search in Google Scholar

Central Statistical Bureau of Latvia. Consumption of fuelwood by its type (%). [Online]. [Accessed 08.10.2024]. Available: https://data.stat.gov.lv/pxweb/en/OSP_OD/OSP_OD__apsekojumi__energ_pat/EPM392.px/ Search in Google Scholar

Central Statistical Bureau of Latvia. Heat plants by fuel type 2007–2023. [Online]. [Accessed 08.10.2024]. Available: https://stat.gov.lv/en/statistics-themes/business-sectors/energy/tables/enb100-heat-plants-fuel-type Search in Google Scholar

Stulpinaite U., Tilvikiene V., Zvicevicius E. Co-pelletization of Hemp Residues and Agricultural Biomass: Effect on Pellet Quality and Stability. Energies 2023:16(16):5900. https://doi.org/10.3390/en16165900 Search in Google Scholar

Gramauskas G., Jasinskas A., Kleiza V., Mieldažys R., Blažauskas E., Souček J. Evaluation of Invasive Herbaceous Plants Utilization for the Production of Pressed Biofuel. Processes 2023:11(7):2097. https://doi.org/10.3390/pr11072097 Search in Google Scholar

Nilsson D., Bernesson S., Hansson P.-A. Pellet production from agricultural raw materials – A systems study. Biomass Bioenergy 2011:35(1):679–689. https://doi.org/10.1016/j.biombioe.2010.10.016 Search in Google Scholar

Pradhan P., Arora A., Mahajani S. M. Pilot scale evaluation of fuel pellets production from garden waste biomass,” Energy Sustain. Dev. 2018:43:(1–14). https://doi.org/10.1016/j.esd.2017.11.005 Search in Google Scholar

Pradhan P., Mahajani S. M., Arora A. Production and utilization of fuel pellets from biomass: A review. Fuel Process. Technol. 2018:181:215–232. https://doi.org/10.1016/j.fuproc.2018.09.021 Search in Google Scholar

Mašán V., Burg P., Souček J., Slaný V., Vaštík L. Energy Potential of Urban Green Waste and the Possibility of Its Pelletization. Sustainability 2023:15(23):16489. https://doi.org/10.3390/su152316489 Search in Google Scholar

Pradhan P., Arora A., Mahajani S. M. Pilot scale evaluation of fuel pellets production from garden waste biomass. Energy Sustain. Dev. 2018:43:1–14. https://doi.org/10.1016/j.esd.2017.11.005 Search in Google Scholar

Graham S., Eastwick C., Snape C., Quick W. Mechanical degradation of biomass wood pellets during long term stockpile storage. Fuel Process. Technol. 2017:160:143–151. https://doi.org/10.1016/j.fuproc.2017.02.017 Search in Google Scholar

Serrano C., Monedero E., Lapuerta M., Portero H. Effect of moisture content, particle size and pine addition on quality parameters of barley straw pellets. Fuel Process. Technol. 2011:92(3):699–706. https://doi.org/10.1016/j.fuproc.2010.11.031. Search in Google Scholar

Theerarattananoon K. et al. Physical properties of pellets made from sorghum stalk, corn stover, wheat straw, and big bluestem. Ind. Crops Prod. 2011:33(2):325–332. https://doi.org/10.1016/j.indcrop.2010.11.014 Search in Google Scholar

Jasinskas A., Petlickaite R., Jotautiene E., Lemanas E., Soucek J. Assessment of energy properties of maize and multi-crop pellets and environmental impact of their combustion. Presented at the 21st International Scientific Conference Engineering for Rural Development. May 2022. https://doi.org/10.22616/ERDev.2022.21.TF231 Search in Google Scholar

Pérez-Orozco R., Patiño D., Porteiro J., Míguez J. L. Bed cooling effects in solid particulate matter emissions during biomass combustion. A morphological insight. Energy 2020:205:118088. https://doi.org/10.1016/j.energy.2020.118088 Search in Google Scholar

Bärnthaler G., Zischka M., Haraldsson C., Obernberger I. Determination of major and minor element contents in solid biofuels. Search in Google Scholar

Rabbat C., Villot A., Awad S., Andrès Y. Gaseous and particulate matter emissions from the combustion of biomass-based insulation materials at end-of-life in a small-scale biomass heating boiler. Fuel 2023:338:127182. https://doi.org/10.1016/j.fuel.2022.127182. Search in Google Scholar

Chaowana P. et al. Utilization of hemp stalk as a potential resource for bioenergy. Mater. Sci. Energy Technol. 2024:7:19–28. https://doi.org/10.1016/j.mset.2023.07.001 Search in Google Scholar

Čepauskienė D., Pedišius N., Milčius D. Chemical composition of agromass ash and its influence on ash melting characteristics. Agronomy Research 2018:16(2). https://doi.org/10.15159/AR.18.078 Search in Google Scholar

Zhai Y., Liu X., Zhang A., Xu M. Comparison of the formation characteristics of condensable particulate matter from the combustion of three solid fuels. Fuel 2022:329:125492. https://doi.org/10.1016/j.fuel.2022.125492 Search in Google Scholar

Yang W. et al. Effect of minerals and binders on particulate matter emission from biomass pellets combustion. Applied Energy 2018:215:106–115. https://doi.org/10.1016/j.apenergy.2018.01.093 Search in Google Scholar

Cheng M., Chen S., Qiao Y., Xu M. Role of alkali chloride on formation of ultrafine particulate matter during combustion of typical food waste. Fuel 2022:315:123153. https://doi.org/10.1016/j.fuel.2022.123153 Search in Google Scholar

Yang W. et al. Mitigation of particulate matter emissions from co-combustion of rice husk with cotton stalk or cornstalk. Renewable Energy 2022:190:893–902. https://doi.org/10.1016/j.renene.2022.03.157. Search in Google Scholar

Jandačka J., Holubčík M., Papučik Š., Nosek R. Combustion of pellets from wheat straw. Acta Montan. Slovaca 2012:17(4):283–289. Search in Google Scholar

Zeng T., Weller N., Pollex A., Lenz V. Blended biomass pellets as fuel for small scale combustion appliances: Influence on gaseous and total particulate matter emissions and applicability of fuel indices. Fuel 2016:184:689–700. https://doi.org/10.1016/j.fuel.2016.07.047. Search in Google Scholar

Zeng T., Pollex A., Weller N., Lenz V., Nelles M. Blended biomass pellets as fuel for small scale combustion appliances: Effect of blending on slag formation in the bottom ash and pre-evaluation options. Fuel 2018:212:108–116. https://doi.org/10.1016/j.fuel.2017.10.036 Search in Google Scholar

ENplus ST 1001:2022, first edition, 2023. [Online]. [Accessed 01.05.2024]. Available: https://enplus-pellets.eu/enin/component/attachments/?task=download&id=817 Search in Google Scholar

LVS EN ISO 14780:2017. Solid biofuels – Sample preparation. Aug. 17, 2017. Search in Google Scholar

LVS EN ISO 18134-2:2017. Solid biofuels – Determination of moisture content – Oven dry method – Part 2: Total moisture – Simplified method. May 18, 2017. Search in Google Scholar

LVS EN ISO 18134-3:2016. Solid biofuels – Determination of moisture content – Oven dry method – Part 3: Moisture in general analysis sample. Jan. 21, 2016. Search in Google Scholar

LVS EN ISO 18122:2023. Solid biofuels – Determination of ash content. Feb. 23, 2023. Search in Google Scholar

LVS EN ISO 16993:2016. Solid biofuels – Conversion of analytical results from one basis to another. Oct. 27, 2016. Search in Google Scholar

LVS EN ISO 18125:2017. Solid biofuels – Determination of calorific value. Aug. 17, 2017. Search in Google Scholar

TNO Biobased and Circular Technologies. Phyllis2, database for (treated) biomass, algae, feedstocks for biogas production and biochar. [Online]. [Accessed 01.05.2024]. Available: https://phyllis.nl/ Search in Google Scholar

ISO 21404:2020(E). Solid biofuels – Determination of ash melting behaviour, first edition, 2020-01, 2020. Search in Google Scholar

TNO Biobased and Circular Technologies. Phyllis2, database for (treated) biomass, algae, feedstocks for biogas production and biochar. [Online]. [Accessed 02.02.2024]. [Online]. Available: https://phyllis.nl/Biomass/View/398 Search in Google Scholar

Jagustyn B., Kmieć M., Smędowski Ł., Sajdak M. The content and emission factors of heavy metals in biomass used for energy purposes in the context of the requirements of international standards. J. Energy Inst. 2017:90(5):704–714. https://doi.org/10.1016/j.joei.2016.07.007 Search in Google Scholar

Xu Z. et al. Heavy metal pollution is more conducive to the independent invasion of Solidago canadensis L. than the co-invasion of two Asteraceae invasive plants. Acta Oecologica 2023:120:103934. https://doi.org/10.1016/j.actao.2023.103934. Search in Google Scholar

Izydorczyk G. et al. Valorization of bio-based post-extraction residues of goldenrod and alfalfa as energy pellets. Energy 2020:194:116898. https://doi.org/10.1016/j.energy.2020.116898. Search in Google Scholar

Samoraj M. et al. Applicability of alfalfa and goldenrod residues after supercritical CO2 extraction to plant micronutrient biosorption and renewable energy production. Energy 2023:262:125437. https://doi.org/10.1016/j.energy.2022.125437. Search in Google Scholar

Golia E. E., Bethanis J., Ntinopoulos N., Kaffe G.-G., Komnou A. A., Vasilou C. Investigating the potential of heavy metal accumulation from hemp. The use of industrial hemp (Cannabis Sativa L.) for phytoremediation of heavily and moderated polluted soils. Sustain. Chem. Pharm. 2023:31:100961. https://doi.org/10.1016/j.scp.2022.100961 Search in Google Scholar

Milan J., Michalska A., Jurowski K. The comprehensive review about elements accumulation in industrial hemp (Cannabis sativa L.). Food Chem. Toxicol. 2024:184:114344. https://doi.org/10.1016/j.fct.2023.114344 Search in Google Scholar

Prade T., Svensson S.-E., Andersson A., Mattsson J. E. Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass Bioenergy 2011:35(7):3040–3049. https://doi.org/10.1016/j.biombioe.2011.04.006 Search in Google Scholar

TNO Biobased and Circular Technologies. Phyllis2, database for (treated) biomass, algae, feedstocks for biogas production and biochar. Hemp, silage (ID number: #1199). [Online]. [Accessed 02.02.2024]. Available: https://phyllis.nl/Biomass/View/1199 Search in Google Scholar

LVS EN ISO 17225-1:2021. Solid biofuels – Fuel specifications and classes – Part 1: General requirements. Sep. 23, 2021. Search in Google Scholar

Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Life Sciences, other