This work is licensed under the Creative Commons Attribution 4.0 International License.
United Nations. UN World Water Development Report 2021. Valuing Water. UNESCO. [Online]. [Accessed 27.05.2022]. Available: https://unesdoc.unesco.org/ark:/48223/pf0000375724Search in Google Scholar
United Nations. Goal 6, Ensure availability and sustainable management of water and sanitation for all. [Online]. [Accessed 27.05.2022]. Available: https://sdgs.un.org/goals/goal6Search in Google Scholar
United Nations Sustainable Development. Water and Sanitation. Accessed: Feb. 21, 2024. [Online]. [Accessed 21.02.2024]. Available: https://www.un.org/sustainabledevelopment/water-and-sanitation/Search in Google Scholar
Kucera J. Desalination: Water from Water, 2nd Edition. Scrivener Publishing LLC. 2014. https://doi.org/10.1002/9781118904855Search in Google Scholar
Alawad S. M., Mansour R. B., Al-Sulaiman F. A., Rehman S. Renewable energy systems for water desalination applications: A comprehensive review. Energy Conversion and Management 2023:286:117035. https://doi.org/10.1016/j.enconman.2023.117035Search in Google Scholar
Al-Saidi M., Saadaoui I., Ben-HamadouR. Governing desalination, managing the brine: A review and systematization of regulatory and socio-technical issues. Water Resources and Industry 2023:30:100225. https://doi.org/10.1016/j.wri.2023.100225Search in Google Scholar
Charisiadis C. Brine Zero Liquid Discharge (ZLD) Fundamentals and Design; A guide to the basic conceptualization of the ZLD/MLD process design and the relative technologies involved. Preprint. https://doi.org/10.13140/RG.2.2.19645.31205Search in Google Scholar
Aly N. H., El-Fiqi A. K. Mechanical vapor compression desalination systems – A case study. Desalination 2003:158(1–3). https://doi.org/10.1016/S0011-9164(03)00444-2Search in Google Scholar
LIFE Desirows. Life Desirows (LIFE19ENV/ES/00447). [Online]. [Accessed: 15.02.2024]. Available: https://lifedesirows.eu/Search in Google Scholar
Han D., He W. F., Yue C., Pu W. H. Study on desalination of zero-emission system based on mechanical vapor compression. Applied Energy 2017:185:1490–1496. https://doi.org/10.1016/j.apenergy.2015.12.061Search in Google Scholar
Ortega-Delgado B., García-Rodríguez L., Alarcón-Padilla D. C. Opportunities of improvement of the MED seawater desalination process by pretreatments allowing high-temperature operation. Desalination and Water Treatment 2017:97:94–108. https://doi.org/10.5004/dwt.2017.21679Search in Google Scholar
Sheta M., Elwardany A., Ookawara S., Hassan H. Energy analysis of a small-scale multi-effect distillation system powered by photovoltaic and thermal collectors. JES 2023:7(1). https://doi.org/10.30521/jes.1160462Search in Google Scholar
Wood J. E., Silverman J., Galanti B., Biton E. Modelling the distributions of desalination brines from multiple sources along the Mediterranean coast of Israel. Water Research 2020:173:115555. https://doi.org/10.1016/j.watres.2020.115555Search in Google Scholar
El-Khatib K. M., Abd El-Hamid A. S., Eissa A. H., Khedr M. A. Transient model, simulation and control of a single-effect mechanical vapour compressi on (SEMVC) desalination system. Desalination 2004:166:157–165. https://doi.org/10.1016/j.desal.2004.06.070Search in Google Scholar
Farahat M. A., Fath H. E. S., El-Sharkawy I. I., Ookawara S., Ahmed M. Energy/exergy analysis of solar driven mechanical vapor compression desalination system with nano-filtration pretreatment. Desalination 2021:509:115078. https://doi.org/10.1016/j.desal.2021.115078Search in Google Scholar
TRNSYS. TRNSYS: Transient System Simulation Tool. Fortran. Universisty of Wisconsin. [Online]. [Accessed: 15.02.2024]. Available: http://www.trnsys.com/index.htmlSearch in Google Scholar
Aybar H. S. Analysis of a mechanical vapor compression desalination system. Desalination 2002:142(2):181–186. https://doi.org/10.1016/S0011-9164(01)00437-4Search in Google Scholar
Helal A. M., Al-Malek S. A. Design of a solar-assisted mechanical vapor compression (MVC) desalination unit for remote areas in the UAE. Desalination 2006:197(1–3):273–300. https://doi.org/10.1016/j.desal.2006.01.021Search in Google Scholar
Tong T., Elimelech M. The Global Rise of Zero Liquid Discharge for Wastewater Management: Drivers, Technologies, and Future Directions. Environmental Science and Technology 2016:50(13):6846–6855. https://doi.org/10.1021/acs.est.6b01000Search in Google Scholar
Pistocchi A., Bleninger T., Dorati C. Screening the hurdles to sea disposal of desalination brine around the Mediterranean. Desalination 2020:491:114570. https://doi.org/10.1016/j.desal.2020.114570Search in Google Scholar
Panagopoulos A. Brine management (saline water & wastewater effluents): Sustainable utilization and resource recovery strategy through Minimal and Zero Liquid Discharge (MLD & ZLD) desalination systems. Chemical Engineering and Processing – Process Intensification 2022:176:108944. https://doi.org/10.1016/j.cep.2022.108944Search in Google Scholar
Millero F. J., Feistel R., Wright D. G., McDougall T. J. The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Research Part I: Oceanographic Research Papers 2008:55(1):50–72. https://doi.org/10.1016/j.dsr.2007.10.001Search in Google Scholar