Cite

Swapnil P., Meena M., Singh S. K., Dhuldhaj U. P., Harish, Marwal A. Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Current Plant Biology 2021:26:100203. https://doi.org/10.1016/J.CPB.2021.100203 Search in Google Scholar

Lu Q., Lu Y. Microalga- and yeast-based astaxanthin production via nutrient recovery from wastewater for aquaculture practice: an emerging technology for sustainable development. Journal of Chemical Technology and Biotechnology 2022:97(11):3035–3048. https://doi.org/10.1002/jctb.7164 Search in Google Scholar

Mussagy C. U., Winterburn J., Santos-Ebinuma V. C., Pereira J. F. B. Production and extraction of carotenoids produced by microorganisms. Applied Microbiology and Biotechnology 2019:103:1095–1114. https://doi.org/10.1007/s00253-018-9557-5 Search in Google Scholar

Rapoport A., Guzhova I., Bernetti L., Buzzini P., Kieliszek M., Kot A. M. Carotenoids and some other pigments from fungi and yeasts, Metabolites 2021:11(2):92. https://doi.org/10.3390/metabo11020092 Search in Google Scholar

Benbelkhir F. Z., Medjekal S. Microalgal carotenoids: A promising alternative to synthetic dyes. Algal Research 2022:66:102823. https://doi.org/10.1016/j.algal.2022.102823 Search in Google Scholar

Misawa N. Carotenoids: Biosynthetic and Biofunctional Approaches, 1261st ed. Singapore: Springer, 2021. Search in Google Scholar

Cassarini M., Besaury L., Rémond C. Valorisation of wheat bran to produce natural pigments using selected microorganisms. Journal of Biotechnology 2021:339:81–92. https://doi.org/10.1016/j.jbiotec.2021.08.003 Search in Google Scholar

Yin F. W., Zhan C. T., Huang J., Sun X. L., Yin L. F., Zheng W. L., Luo X., Zhang Y. Y., Fu Y. Q. Efficient Co-production of Docosahexaenoic Acid Oil and Carotenoids in Aurantiochytrium sp. Using a Light Intensity Gradient Strategy. Applied Biochemistry and Biotechnology 2023:195:623–638. https://doi.org/10.1007/s12010-022-04134-w Search in Google Scholar

Janchot K., Rauytanapanit M., Honda M., Hibino T., Sirisattha S., Praneenararat T., Kageyama H., Waditee-Sirisattha R. Effects of Potassium Chloride-Induced Stress on the Carotenoids Canthaxanthin, Astaxanthin, and Lipid Accumulations in the Green Chlorococcal Microalga Strain TISTR 9500. Journal of Eukaryotic Microbiology 2019:66(5):778–787. https://doi.org/10.1111/JEU.12726 Search in Google Scholar

Maoka T. Carotenoids as natural functional pigments. Journal of Natural Medicines 2020:74:1–16. https://doi.org/10.1007/s11418-019-01364-x Search in Google Scholar

Borowitzka M. A. Carotenoid Production Using Microorganisms. Single Cell Oils: Microbial and Algal Oils: Second Edition 2010:225–240. https://doi.org/10.1016/B978-1-893997-73-8.50015-3 Search in Google Scholar

Kot A. M., Błazejak S., Kieliszek M., Gientka I., Brys J., Reczek L., Pobiega K. Effect of exogenous stress factors on the biosynthesis of carotenoids and lipids by Rhodotorula yeast strains in media containing agro-industrial waste. World Journal of Microbiology and Biotechnology 2019:35(10). https://doi.org/10.1007/s11274-019-2732-8 Search in Google Scholar

Madaan T., Choudhary A. N., Gyenwalee S., Thomas S., Mishra H., Tariq M., Vohora D., Talegaonkar S. Lutein, a versatile phyto-nutraceutical: An insight on pharmacology, therapeutic indications, challenges and recent advances in drug delivery. PharmaNutrition 2017:5(2):64–75. https://doi.org/10.1016/j.phanu.2017.02.005 Search in Google Scholar

Castangia I., Manca M. L., Razavi S. H., Nácher A., Díez-Sales O., Peris J. E., Allaw M., Terencio M. C., Usach I., Manconi M. Canthaxanthin Biofabrication, Loading in Green Phospholipid Vesicles and Evaluation of In Vitro Protection of Cells and Promotion of Their Monolayer Regeneration. Biomedicines 2022:10(1):157. https://doi.org/10.3390/biomedicines10010157 Search in Google Scholar

Galasso C., Corinaldesi C., Sansone C. Carotenoids from marine organisms: Biological functions and industrial applications. Antioxidants 2017:6(4):96. https://doi.org/10.3390/antiox6040096 Search in Google Scholar

Sun T., Rao S., Zhou X., Li L. Plant carotenoids: recent advances and future perspectives. Molecular Horticulture 2022:2:1–21. https://doi.org/10.1186/s43897-022-00023-2 Search in Google Scholar

Bogacz-Radomska L., Harasym J., Piwowar A. Commercialization aspects of carotenoids, in Carotenoids: Properties, Processing and Applications 2020:327–357. https://doi.org/10.1016/B978-0-12-817067-0.00010-5 Search in Google Scholar

Zia-Ul-Haq M., Carotenoids: Structure and Function in the Human Body. Switzerland: Springer, 2021. https://doi.org/10.1007/978-3-030-46459-2 Search in Google Scholar

Cheng S. H., Khoo H. E., Kong K. W., Prasad K. N., Galanakis C. M. Extraction of carotenoids and applications. Carotenoids: Properties, Processing and Applications 2020:259–288. https://doi.org/10.1016/B978-0-12-817067-0.00008-7 Search in Google Scholar

Arab M., Razavi S. H., Hosseini S. M., Nayebzadeh K., Meybodi N. M., Khanniri E., Mardi P., Mortazavian A. M. Production and characterization of functional flavored milk and flavored fermented milk using microencapsulated canthaxanthin. LWT 2019:114:108373. https://doi.org/10.1016/j.lwt.2019.108373 Search in Google Scholar

Yaqoob S., Riaz M., Shabbir A., Zia-Ul-Haq M., Alwakeel S. S., Bin-Jumah M. Commercialization and Marketing Potential of Carotenoids, in Carotenoids: Structure and Function in the Human Body 2021:799–826. https://doi.org/10.1007/978-3-030-46459-2_27 Search in Google Scholar

Martinez-Camara S., Ibanez A., Rubio S., Barreiro C., Barredo J.-L. Main Carotenoids Produced by Microorganisms. Encyclopedia 2021:1(4):1223–1245. https://doi.org/10.3390/encyclopedia1040093 Search in Google Scholar

Fawzy S., Wang W., Zhou Y., Xue Y., Yi G., Wu M., Huang X. Can dietary β-carotene supplementation provide an alternative to astaxanthin on the performance of growth, pigmentation, biochemical, and immuno-physiological parameters of Litopenaeus vannamei? Aquaculture Reports 2022:23:101054. https://doi.org/10.1016/J.AQREP.2022.101054 Search in Google Scholar

Aruldass C. A., Dufosse L., Ahmad W. A. Current perspective of yellowish-orange pigments from microorganisms-a review. Journal of Cleaner Production 2018:180:168–182. https://doi.org/10.1016/j.jclepro.2018.01.093 Search in Google Scholar

Lim K. C., Yusoff F. M., Shariff M., Kamarudin M. S. Astaxanthin as feed supplement in aquatic animals, Reviews in Aquaculture 2018:10(3):738–773. https://doi.org/10.1111/raq.12200 Search in Google Scholar

Rebelo B. A., Farrona S., Rita Ventura M., Abranches R. Canthaxanthin, a Red-Hot Carotenoid: Applications, Synthesis, and Biosynthetic Evolution. Plants 2020:9(8):1039. https://doi.org/10.3390/PLANTS9081039 Search in Google Scholar

Roberts R. L., Green J., Lewis B. Lutein and zeaxanthin in eye and skin health. Clinics in Dermatology 2009:27(2):195–201. https://doi.org/10.1016/j.clindermatol.2008.01.011 Search in Google Scholar

Johnson E. J. Role of lutein and zeaxanthin in visual and cognitive function throughout the lifespan. Nutrition Reviews 2014:72(9):605–612. https://doi.org/10.1111/nure.12133 Search in Google Scholar

Caseiro M., Ascenso A., Costa A., Creagh-flynn J., Johnson M., Simoes S. Lycopene in human health. LWT - Food Science and Technology 2020:127:109323. https://doi.org/10.1016/j.lwt.2020.109323 Search in Google Scholar

Khalid M., Saeed-ur-Rahman, Bilal M., Iqbal H. M. N., Huang D. Biosynthesis and biomedical perspectives of carotenoids with special reference to human health-related applications. Biocatalysis and Agricultural Biotechnology 2019:17:399–407. https://doi.org/10.1016/J.BCAB.2018.11.027 Search in Google Scholar

Rao A. V., Ray M. R., Rao L. G. Lycopene. Advances in Food and Nutrition Research 2006:51:99–164. https://doi.org/10.1016/S1043-4526(06)51002-2 Search in Google Scholar

Johnson E. J. A possible role for lutein and zeaxanthin in cognitive function in the elderly. American Journal of Clinical Nutrition 2012:96(5):1161S–1165S. https://doi.org/10.3945/ajcn.112.034611 Search in Google Scholar

Alugoju P., Krishna Swamy V. K. D., Anthikapalli N. V. A., Tencomnao T. Health benefits of astaxanthin against age-related diseases of multiple organs: A comprehensive review. Critical Reviews in Food Science and Nutrition 2023:61(31):10709–10774. https://doi.org/10.1080/10408398.2022.2084600 Search in Google Scholar

Fakhri S., Abbaszadeh F., Dargahi L., Jorjani M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacological Research 2018:136:1–20. https://doi.org/10.1016/j.phrs.2018.08.012 Search in Google Scholar

Nabi F., Arain M. A., Rajput N., Alagawany M., Soomro J., Umer M., Soomro F., Wang Z., Ye R., Liu J. Health benefits of carotenoids and potential application in poultry industry: A review. Journal of Animal Physiology and Animal Nutrition 2020:104(6):1809–1818. https://doi.org/10.1111/jpn.13375 Search in Google Scholar

Dias M. G., Borge G. I. A., Kljak K., Mandić A. I., Mapelli-Brahm P., Olmedilla-Alonso B., Pintea A. M., Ravasco F., Šaponjac V. T., Sereikaitė J., Vargas-Murga L., Vulić J. J., Meléndez-Martínez A. J. European database of carotenoid levels in foods. Factors affecting carotenoid content. Foods 2021:10(5):912. https://doi.org/10.3390/foods10050912 Search in Google Scholar

Schweiggert R. M., Carle R., Chapter 12 - Carotenoid Production by Bacteria, Microalgae, and Fungi. In Carotenoids in Nutrition: Therapy, Spectroscopy and Technology 2016. https://doi.org/10.1002/9781118622223.ch12 Search in Google Scholar

Khan U. M., Sevindik M., Zarrabi A., Nami M., Ozdemir B., Kaplan D. N., Selamoglu Z., Hasan M., Kumar M., Alshehri M. M., Sharifi-rad J. Lycopene: Food Sources, Biological Activities, and Human Health Benefits. Oxidative Medicine and Cellular Longevity 2021. https://doi.org/10.1155/2021/2713511 Search in Google Scholar

Yamaguchi M. Carotenoids food sources, production and health benefits. Nova Science Publishers Inc., 2013. Search in Google Scholar

Lorenz R. T., Cysewski G. R. Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology 2000:18(4):160–167. https://doi.org/10.1016/S0167-7799(00)01433-5 Search in Google Scholar

Esatbeyoglu T., Rimbach G. Canthaxanthin: From molecule to function. Molecular Nutrition & Food Research 2017:61(6):1600469. https://doi.org/10.1002/mnfr.201600469 Search in Google Scholar

Steven R., Humaira Z., Natanael Y., Dwivany F. M., Trinugroho J. P., Dwijayanti A., Kristianti T., Tallei T. E., Emran T. Bin, Jeon H., Alhumaydhi F. A., Radjasa O. K., Kim B. Marine Microbial-Derived Resource Exploration: Uncovering the Hidden Potential of Marine Carotenoids. Marine Drugs 2022:20(6):352. https://doi.org/10.3390/md20060352 Search in Google Scholar

Colusse G. A., Duarte M. E. R., De Carvalho J. C., Noseda M. D. Production of astaxanthin by Haematococcus pluvialis: Lab processes to scale up including the cost considerations. Global Perspectives on Astaxanthin: From Industrial Production to Food, Health, and Pharmaceutical Applications 2021:121–130. https://doi.org/10.1016/B978-0-12-823304-7.00019-2 Search in Google Scholar

Sui Y., Mazzucchi L., Acharya P., Xu Y., Morgan G., Harvey P. J. A comparison of β-carotene, phytoene and amino acids production in Dunaliella salina DF 15 (CCAP 19/41) and Dunaliella salina CCAP 19/30 using different light wavelengths. Foods 2021:10(11):2824. https://doi.org/10.3390/foods10112824 Search in Google Scholar

Xu F., Yuan Q. P., Zhu Y. Improved production of lycopene and β-carotene by Blakeslea trispora with oxygen-vectors. Process Biochemistry 2007:42(2):289–293. https://doi.org/10.1016/j.procbio.2006.08.007 Search in Google Scholar

Harith Z. T., Lima M. de A., Charalampopoulos D., Chatzifragkou A. Optimised Production and Extraction of Astaxanthin from the Yeast Xanthophyllomyces dendrorhous. Microorganisms 2020:8(3):430. https://doi.org/10.3390/microorganisms8030430 Search in Google Scholar

Rodriguez-Amaya D. B. Update on natural food pigments – A mini-review on carotenoids, anthocyanins, and betalains. Food Research International 2019:124:200–205. https://doi.org/10.1016/j.foodres.2018.05.028 Search in Google Scholar

Ashokkumar V., Flora G., Sevanan M., Sripriya R., Chen W. H., Park J. H., Rajesh banu J., Kumar G. Technological advances in the production of carotenoids and their applications – A critical review. Bioresource Technology 2023:367:128215. https://doi.org/10.1016/j.biortech.2022.128215 Search in Google Scholar

Venil C. K., Dufosse L., Renuka Devi P. Bacterial Pigments: Sustainable Compounds With Market Potential for Pharma and Food Industry. Frontiers in Sustainable Food Systems 2020:4. https://doi.org/10.3389/fsufs.2020.00100 Search in Google Scholar

Stachowiak B., Szulc P. Astaxanthin for the Food Industry. Molecules 2021:26(9):2666. https://doi.org/10.3390/molecules26092666 Search in Google Scholar

Goswami R. K., Agrawal K., Verma P. Chapter 6 - An Overview of Microalgal Carotenoids: Advances in the Production and Its Impact on Sustainable Development. In Bioenergy Research: Evaluating Strategies for Commercialization and Sustainability, eds. Srivastava N., Srivastava M. 2021:105–128. https://doi.org/10.1002/9781119772125.ch6 Search in Google Scholar

Foong L. C., Loh C. W. L., Ng H. S., Lan J. C. W. Recent development in the production strategies of microbial carotenoids. World Journal of Microbiology and Biotechnology 2021:37:12. https://doi.org/10.1007/s11274-020-02967-3 Search in Google Scholar

Langi P., Kiokias S., Varzakas T., Proestos C. Carotenoids: From plants to food and feed industries. In Methods in Molecular Biology 2018:1852. https://doi.org/10.1007/978-1-4939-8742-9_3 Search in Google Scholar

Capelli B., Bagchi D., Cysewski G. R. Synthetic astaxanthin is significantly inferior to algal-based astaxanthin as an antioxidant and may not be suitable as a human nutraceutical supplement. Nutrafoods 2013:12:145–152. https://doi.org/10.1007/s13749-013-0051-5 Search in Google Scholar

Kumar S., Kumar R., Kumari A., Panwar A. Astaxanthin: A super antioxidant from microalgae and its therapeutic potential. Journal of Basic Microbiology 2022:62(9):1064–1082. https://doi.org/10.1002/jobm.202100391 Search in Google Scholar

Nair A., Ahirwar A., Singh S., Lodhi R., Lodhi A., Rai A., Jadhav D. A., Harish, Varjani S., Singh G., Marchand J., Schoefs B., Vinayak V. Astaxanthin as a King of Ketocarotenoids: Structure, Synthesis, Accumulation, Bioavailability and Antioxidant Properties. Marine Drugs 2023:21(3):176. https://doi.org/10.3390/md21030176 Search in Google Scholar

Dufosse L. Current and Potential Natural Pigments From Microorganisms (Bacteria, Yeasts, Fungi, Microalgae). Handbook on Natural Pigments in Food and Beverages: Industrial Applications for Improving Food Color 2016:337–354. https://doi.org/10.1016/B978-0-08-100371-8.00016-6 Search in Google Scholar

Gervasi T., Santini A., Daliu P., Salem A. Z. M., Gervasi C., Pellizzeri V., Barrega L., De Pasquale P., Dugo G., Cicero N. Astaxanthin production by Xanthophyllomyces dendrorhous growing on a low cost substrate. Agroforestry Systems 2020:94:1229–1234. https://doi.org/10.1007/s10457-018-00344-6 Search in Google Scholar

Shah M. M. R., Liang Y., Cheng J. J., Daroch M. Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Frontiers in Plant Science 2016:7:531. https://doi.org/10.3389/fpls.2016.00531 Search in Google Scholar

Nishshanka G. K. S. H., Liyanaarachchi V. C., Premaratne M., Ariyadasa T. U., Nimarshana P. H. V. Sustainable cultivation of Haematococcus pluvialis and Chromochloris zofingiensis for the production of astaxanthin and co-products. The Canadian Journal of Chemical Engineering 2022:100(10):2835–2849. https://doi.org/10.1002/cjce.24317 Search in Google Scholar

Abe K., Hattori H., Hirano M. Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chemistry 2007:100(2):656–661. https://doi.org/10.1016/j.foodchem.2005.10.026 Search in Google Scholar

Saito M., Watanabe H., Sasaki M., Ookubo M., Yarita T., Shiraiwa M., Asayama M. Coproduction of lipids and carotenoids by the novel green alga Coelastrella sp. depending on cultivation conditions. Biotechnology Reports 2023:37. https://doi.org/10.1016/j.btre.2022.e00769 Search in Google Scholar

Wang X., Zhang M.-M., Liu S.-F., Xu R.-L., Mou J.-H., Qin Z.-H., Zhou Z.-G., Li H.-Y., Sze C., Lin K., Sun Z. Synergistic bioconversion of lipids and carotenoids from food waste by Dunaliella salina with fulvic acid via a two-stage cultivation strategy. Energy Conversion and Management 2021:234:113908. https://doi.org/10.1016/j.enconman.2021.113908 Search in Google Scholar

Stoklosa R. J., Johnston D. B., Nghiem N. P. Phaffia rhodozyma cultivation on structural and non-structural sugars from sweet sorghum for astaxanthin generation. Process Biochemistry 2019:83:9–17. https://doi.org/10.1016/j.procbio.2019.04.005 Search in Google Scholar

Harith Z. T., Lima M. de A., Charalampopoulos D., Chatzifragkou A. Optimised production and extraction of astaxanthin from the yeast Xanthophyllomyces dendrorhous. Microorganisms 2020:8(3):430. https://doi.org/10.3390/microorganisms8030430 Search in Google Scholar

Liu Y. S., Wu J. Y., Ho K. P. Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Biochemical Engineering Journal 2006:27(3):331–335. https://doi.org/10.1016/j.bej.2005.08.031 Search in Google Scholar

Zhang C., Zhao X., Yao M., Zhang J., Liu L., Li Q., Xu H., Li R., Tian Y. High-density cultivation of Phaffia rhodozyma SFAS-TZ08 in sweet potato juice for astaxanthin production. Electronic Journal of Biotechnology 2023:61:1–8. https://doi.org/10.1016/j.ejbt.2022.09.007 Search in Google Scholar

Yen H. W., Palanisamy G., Su G. C. The Influences of Supplemental Vegetable Oils on the Growth and β-carotene Accumulation of Oleaginous Yeast-Rhodotorula glutinis. Biotechnology and Bioprocess Engineering 2019:24:522–528. https://doi.org/10.1007/s12257-019-0027-4 Search in Google Scholar

Rodrigues T. V. D., Amore T. D., Teixeira E. C., Burkert J. F. de M. Carotenoid Production by Rhodotorula mucilaginosa in Batch and Fed-Batch Fermentation Using Agroindustrial Byproducts. Food Technology and Biotechnology 2019:57:388. https://doi.org/10.17113/ftb.57.03.19.6068 Search in Google Scholar

Sharma R., Ghoshal G. Optimization of carotenoids production by Rhodotorula mucilaginosa (MTCC-1403) using agro-industrial waste in bioreactor: A statistical approach. Biotechnology Reports 2020:25:e00407. https://doi.org/10.1016/j.btre.2019.e00407 Search in Google Scholar

Goswami G., Chakraborty S., Chaudhuri S., Dutta D. Optimization of process parameters by response surface methodology and kinetic modeling for batch production of canthaxanthin by Dietzia maris NIT-D (accession number: HM151403). Bioprocess and Biosystems Engineering 2012:35:1375–1388. https://doi.org/10.1007/s00449-012-0726-0 Search in Google Scholar

Bera S., Sv V. B., Chaudhuri S., Dutta D. Strong Antioxidant Property of Bacterial Canthaxanthin Obtained By Raw Coconut Water Supplementation as an Additional Nutrient Source. Proceeding of 2015 International Conference on Bio-Medical Engineering and Environmental Technology, 2015. Search in Google Scholar

Abuthahir S. S. F., Venil C. K., Malathi M., Devi P. R. Optimization of submerged fermentation for enhanced production of canthaxanthin by Dietzia maris AURCCBT01. Materials Today: Proceedings 2021:47(9):2132–2137. https://doi.org/10.1016/j.matpr.2021.05.150 Search in Google Scholar

Xiao A., Jiang X., Ni H., Yang Q., Cai H. Study on the relationship between intracellular metabolites and astaxanthin accumulation during Phaffia rhodozyma fermentation. Electronic Journal of Biotechnology 2015:18:148–153. https://doi.org/10.1016/j.ejbt.2015.02.002 Search in Google Scholar

Luna-Flores C. H., Wang A., von Hellens J., Speight R. E. Towards commercial levels of astaxanthin production in Phaffia rhodozyma. Journal of Biotechnology 2022:350:42–54. https://doi.org/10.1016/j.jbiotec.2022.04.001 Search in Google Scholar

Tran T. N., Tran Q. V., Huynh H. T., Hoang N. S., Nguyen H. C., Ngo D. N. Astaxanthin Production by Newly Isolated Rhodosporidium toruloides: Optimization of Medium Compositions by Response Surface Methodology. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 2019:47:320–327. https://doi.org/10.15835/nbha47111361 Search in Google Scholar

Dursun D., Dalgic A. C. Optimization of astaxanthin pigment bioprocessing by four different yeast species using wheat wastes. Biocatalysis and Agricultural Biotechnology 2016:7:1–6. https://doi.org/10.1016/j.bcab.2016.04.006 Search in Google Scholar

Naz T., Nosheen S., Li S., Nazir Y., Mustafa K., Liu Q., Garre V., Song Y. Comparative Analysis of β-Carotene Production by Mucor circinelloides Strains CBS 277.49 and WJ11 under Light and Dark Conditions. Metabolites 2020:10(1):38. https://doi.org/10.3390/metabo10010038 Search in Google Scholar

Nanou K., Roukas T., Papadakis E. Improved production of carotenes from synthetic medium by Blakeslea trispora in a bubble column reactor. Biochemical Engineering Journal 2012:67:203–207. https://doi.org/10.1016/j.bej.2012.06.018 Search in Google Scholar

Silva T. P., Paix S. M. Ability of Gordonia alkanivorans strain 1B for high added value carotenoids production. RSC Advances 2016:58055–58063. https://doi.org/10.1039/C6RA08126F Search in Google Scholar

Fernandes A. S., Paixão S. M., Silva T. P., Roseiro J. C., Alves L. Influence of culture conditions towards optimal carotenoid production by Gordonia alkanivorans strain 1B. Bioprocess and Biosystems Engineering 2018:41:143–155. https://doi.org/10.1007/s00449-017-1853-4 Search in Google Scholar

Chougle J. A., Singhal R. S. Metabolic precursors and cofactors stimulate astaxanthin production in Paracoccus MBIC 01143. Food Science and Biotechnology 2012:21:1695–1700. https://doi.org/10.1007/s10068-012-0225-8 Search in Google Scholar

Kumar P., Jun H. B., Kim B. S. Co-production of polyhydroxyalkanoates and carotenoids through bioconversion of glycerol by Paracoccus sp. strain LL1. International Journal of Biological Macromolecules 2018:107:2552–2558. https://doi.org/10.1016/j.ijbiomac.2017.10.147 Search in Google Scholar

Asker D., Amano S., Morita K., Tamura K., Sakuda S., Kikuchi N., Furihata K., Matsufuji H., Beppu T., Ueda K. Astaxanthin dirhamnoside, a new astaxanthin derivative produced by a radio-tolerant bacterium, Sphingomonas astaxanthinifaciens. The Journal of Antibiotics 2009:62:397–399. https://doi.org/10.1038/ja.2009.50 Search in Google Scholar

Yamasaki T., Aki T., Shinozaki M., Taguchi M., Kawamoto S., Ono K. Utilization of Shochu distillery wastewater for production of polyunsaturated fatty acids and xanthophylls using thraustochytrid. Journal of Bioscience and Bioengineering 2006:102(4):323–327. https://doi.org/10.1263/jbb.102.323 Search in Google Scholar

Chang M., Zhang T., Guo X., Liu Y., Liu R., Jin Q., Wang X. Optimization of cultivation conditions for efficient production of carotenoid-rich DHA oil by Schizochytrium sp. S31. Process Biochemistry 2020:94:190–197. https://doi.org/10.1016/j.procbio.2020.04.007 Search in Google Scholar

Xiao R., Li X., Leonard E., Tharayil N., Zheng Y. Investigation on the effects of cultivation conditions, fed-batch operation, and enzymatic hydrolysate of corn stover on the astaxanthin production by Thraustochytrium striatum. Algal research 2019:39:101475. https://doi.org/10.1016/j.algal.2019.101475 Search in Google Scholar

Hu Z. C., Zheng Y. G., Wang Z., Shen Y. C. pH control strategy in astaxanthin fermentation bioprocess by Xanthophyllomyces dendrorhous. Enzyme and Microbial Technology 2006:39(4):586–590. https://doi.org/10.1016/j.enzmictec.2005.11.017 Search in Google Scholar

Cardoso L. A. C., Jäckel S., Karp S. G., Framboisier X., Chevalot I., Marc I. Improvement of Sporobolomyces ruberrimus carotenoids production by the use of raw glycerol. Bioresource Technology 2016:200:374–379. https://doi.org/10.1016/j.biortech.2015.09.108 Search in Google Scholar

Joshi C., Singhal R. S. Modelling and optimization of zeaxanthin production by Paracoccus zeaxanthinifaciens ATCC 21588 using hybrid genetic algorithm techniques. Biocatalysis and Agricultural Biotechnology 2016:8:228–235. https://doi.org/10.1016/j.bcab.2016.10.004 Search in Google Scholar

Tinoi J., Rakariyatham N., Deming R. L. Simplex optimization of carotenoid production by Rhodotorula glutinis using hydrolyzed mung bean waste flour as substrate. Process Biochemistry 2005:40(7):2551–2557. https://doi.org/10.1016/j.procbio.2004.11.005 Search in Google Scholar

Rodriguez-Sifuentes L., Marszalek J. E., Hernandez-Carbajal G., Chuck-Hernandez C. Importance of Downstream Processing of Natural Astaxanthin for Pharmaceutical Application. Frontiers in Chemical Engineering 2021:2:601483. https://doi.org/10.3389/fceng.2020.601483 Search in Google Scholar

Bhosale P., Bernstein P. S. β-Carotene production by Flavobacterium multivorum in the presence of inorganic salts and urea. Journal of Industrial Microbiology and Biotechnology 2004:31:565–571. https://doi.org/10.1007/s10295-004-0187-9 Search in Google Scholar

Bhosale P., Larson A. J., Bernstein P. S. Factorial analysis of tricarboxylic acid cycle intermediates for optimization of zeaxanthin production from Flavobacterium multivorum. Journal of Applied Microbiology 2004:96(3):623–629. https://doi.org/10.1111/j.1365-2672.2004.02197.x Search in Google Scholar

Gharibzahedi S. M., Razavi S. H., Mousavi M. Optimisation and kinetic studies on the production of intracellular canthaxanthin in fed-batch cultures of Dietzia natronolimnaea HS-1. Quality Assurance and Safety of Crops & Foods 2015:7(5):757–767. https://doi.org/10.3920/QAS2014.0503 Search in Google Scholar

Nasrabadi M. R. N., Razavi S. H. Enhancement of canthaxanthin production from Dietzia natronolimnaea HS-1 in a fed-batch process using trace elements and statistical methods. Brazilian Journal of Chemical Engineering 2010:27(4):517–529. https://doi.org/10.1590/S0104-66322010000400003 Search in Google Scholar

Naz T., Yang J., Nosheen S., Sun C., Nazir Y., Mohamed H., Fazili A. B. A., Ullah S., Li S., Yang W., Garre V., Song Y. Genetic Modification of Mucor circinelloides for Canthaxanthin Production by Heterologous Expression of β-carotene Ketolase Gene. Frontiers in Nutrition 2021:8:718. https://doi.org/10.3389/fnut.2021.756218 Search in Google Scholar

Khodaiyan, Faramarz, Razavi S. H., Emam-Djomeh Z., Mousavi S. M. A., Hejazi M. A. Effect of Culture Conditions on Canthaxanthin Production by Dietzia natronolimnaea HS-1.pdf. Journal of Microbiology and Biote 2007:17:195–201. Search in Google Scholar

Soares A. T., da Costa D. C., Vieira A. A. H., Antoniosi Filho N. R. Analysis of major carotenoids and fatty acid composition of freshwater microalgae. Heliyon 2019:5:e01529. https://doi.org/10.1016/j.heliyon.2019.e01529 Search in Google Scholar

Harith Z. T., Charalampopoulos D., Chatzifragkou A. Rapeseed meal hydrolysate as substrate for microbial astaxanthin production. Biochemical Engineering Journal 2019:151:107330. https://doi.org/10.1016/j.bej.2019.107330 Search in Google Scholar

Han M., He Q., Zhang W. G. Carotenoids production in different culture conditions by Sporidiobolus pararoseus. Preparative Biochemistry and Biotechnology 2012:42(4):293–303. https://doi.org/10.1080/10826068.2011.583974 Search in Google Scholar

Petrik S., Obruča S., Benešová P., Márová I. Bioconversion of spent coffee grounds into carotenoids and other valuable metabolites by selected red yeast strains. Biochemical Engineering Journal 2014:90:307–315. https://doi.org/10.1016/j.bej.2014.06.025 Search in Google Scholar

Razavi S. H., Mousavi S. M., Yeganeh H. M., Marc I. Fatty acid and carotenoid production by Sporobolomyces ruberrimus when using technical glycerol and ammonium sulfate. Journal of Microbiology and Biotechnology 2007:17(10):1591–1597. Search in Google Scholar

Choudhari S., Singhal R. Media optimization for the production of β-carotene by Blakeslea trispora: A statistical approach. Bioresource Technology 2008:99:722–730. https://doi.org/10.1016/j.biortech.2007.01.044 Search in Google Scholar

Pyter W., Grewal J., Bartosik D., Drewniak L., Pranaw K. Pigment Production by Paracoccus spp. Strains through Submerged Fermentation of Valorized Lignocellulosic Wastes. Fermentation 2022:8(9):440. https://doi.org/10.3390/fermentation8090440 Search in Google Scholar

Sajilata M. G., Bule M. V., Chavan P., Singhal R. S., Kamat M. Y. Development of efficient supercritical carbon dioxide extraction methodology for zeaxanthin from dried biomass of Paracoccus zeaxanthinifaciens. Separation and Purification Technology 2010:71(2):173–177. https://doi.org/10.1016/j.seppur.2009.11.017 Search in Google Scholar

Thawornwiriyanun P., Tanasupawat S., Dechsakulwatana C., Techkarnjanaruk S., Suntornsuk W. Identification of Newly Zeaxanthin-Producing Bacteria Isolated from Sponges in the Gulf of Thailand and their Zeaxanthin Production. Applied Biochemistry and Biotechnology 2012:167:2357–2368. https://doi.org/10.1007/s12010-012-9760-2 Search in Google Scholar

Saejung C., Apaiwong P. Enhancement of carotenoid production in the new carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2. Biotechnology and Bioprocess Engineering 2015:20:701–707. https://doi.org/10.1007/s12257-015-0015-2 Search in Google Scholar

Gharibzahedi S. M. T., Razavi S. H., Mousavi M. Kinetic analysis and mathematical modeling of cell growth and canthaxanthin biosynthesis by Dietzia natronolimnaea HS-1 on waste molasses hydrolysate. RSC Advances 2013:3(45):23495. https://doi.org/10.1039/c3ra44663h Search in Google Scholar

Rammuni M. N., Ariyadasa T. U., Nimarshana P. H. V., Attalage R. A. Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chemistry 2019:277:128–134. https://doi.org/10.1016/j.foodchem.2018.10.066 Search in Google Scholar

Prieto A., Pedro Cañavate J., García-González M. Assessment of carotenoid production by Dunaliella salina in different culture systems and operation regimes. Journal of Biotechnology 2011:151(2):180–185. https://doi.org/10.1016/j.jbiotec.2010.11.011 Search in Google Scholar

Yen H. W., Hu C. Y., Liang W. S. A cost efficient way to obtain lipid accumulation in the oleaginous yeast Rhodotorula glutinis using supplemental waste cooking oils (WCO). Journal of the Taiwan Institute of Chemical Engineers 2019:97:80–87. https://doi.org/10.1016/j.jtice.2019.02.012 Search in Google Scholar

Petrik S., Marova I., Haronikova A. Production of biomass, carotenoid and other lipid metabolites by several red yeast strains cultivated on waste glycerol from biofuel production – a comparative screening study. Annals of Microbiology 2013:63:1537–1551. https://doi.org/10.1007/s13213-013-0617-x Search in Google Scholar

Han M., Xu Z. yuan, Du C., Qian H., Zhang W. G. Effects of nitrogen on the lipid and carotenoid accumulation of oleaginous yeast Sporidiobolus pararoseus. Bioprocess and Biosystems Engineering 2016:39:1425–1433. https://doi.org/10.1007/s00449-016-1620-y Search in Google Scholar

Kanpiengjai A., Khanongnuch C., Lumyong S., Haltrich D., Nguyen T. H., Kittibunchakul S., Co-production of gallic acid and a novel cell-associated tannase by a pigment-producing yeast, Sporidiobolus ruineniae A45.2. Microbial Cell Factories 2020:19:1–12. https://doi.org/10.1186/s12934-020-01353-w Search in Google Scholar

Dimitrova S., Pavlova K., Lukanov L., Korotkova E., Petrova E., Zagorchev P., Kuncheva M. Production of Metabolites with Antioxidant and Emulsifying Properties by Antarctic Strain Sporobolomyces salmonicolor AL1. Appl Biochem Biotechnol 2013:169:301–311. https://doi.org/10.1007/s12010-012-9983-2 Search in Google Scholar

Saejung C., Lomthaisong K., Kotthale P. Alternative microbial-based functional ingredient source for lycopene, beta-carotene, and polyunsaturated fatty acids. Heliyon 2023:9(3):e13828. https://doi.org/10.1016/j.heliyon.2023.e13828 Search in Google Scholar

Patthawaro S., Lomthaisong K., Saejung C. Bioconversion of Agro-Industrial Waste to Value-Added Product Lycopene by Photosynthetic Bacterium Rhodopseudomonas faecalis and Its Carotenoid Composition. Waste and Biomass Valorization 2020:11:2375–2386. https://doi.org/10.1007/s12649-018-00571-z Search in Google Scholar

Dufosse L. Microbial Pigments From Bacteria, Yeasts, Fungi, and Microalgae for the Food and Feed Industries. Natural and Artificial Flavoring Agents and Food Dyes in: Handbook of Food Bioengineering 2018:113–132. https://doi.org/10.1016/B978-0-12-811518-3.00004-1 Search in Google Scholar

Del Campo J. A., Rodríguez H., Moreno J., Vargas M. Á., Rivas J., Guerrero M. G. Accumulation of astaxanthin and lutein in Chlorella zofingiensis (Chlorophyta). Applied Microbiology and Biotechnology 2004:64:848–854. https://doi.org/10.1007/s00253-003-1510-5 Search in Google Scholar

Zhang Q., Wang J., Li C., Zheng M., He Z., Zou Y., Xiong H., Xu B., Xiang W., Tang J. Characterization and Bioactive Potential of Carotenoid Lutein from Gordonia rubripertncta GH-1 Isolated from Traditional Pixian Douban. Foods 2022:11(22):3649. https://doi.org/10.3390/foods11223649 Search in Google Scholar

Bourdon L., Jensen A. A., Kavanagh J. M., McClure D. D. Microalgal production of zeaxanthin. Algal Research 2021:55:102266. https://doi.org/10.1016/j.algal.2021.102266 Search in Google Scholar

Cheng S. H., Khoo H. E., Kong K. W., Prasad K. N., Galanakis C. M. 8 - Extraction of carotenoids and applications, in Carotenoids: Properties, Processing and Applications 2020:259–288. https://doi.org/10.1016/B978-0-12-817067-0.00008-7 Search in Google Scholar

Kolašinac S. M., Stevanović Z. P. D., Kilibarda S. N., Kostić A. Carotenoids: New applications of “old” pigments. Phyton-International Journal of Experimental Botany 2021:90(4):1041–1062. https://doi.org/10.32604/phyton.2021.015996 Search in Google Scholar

Cerezal-Mezquita P., Espinosa-Alvarez C., Jáuregui-Tirado M., Jaime-Matus C., Palma-Ramirez J., Ruiz-Dominguez M. C. Physical-chemical characteristics of “Red Meal”, a novel non-defatted additive in the fish feed from cracked biomass of Haematococcus pluvialis. Animal Feed Science and Technology 2022:285:115247. https://doi.org/10.1016/j.anifeedsci.2022.115247 Search in Google Scholar

Mezzomo N., Ferreira S. R. S. Carotenoids functionality, sources, and processing by supercritical technology: A review. Journal of Chemistry 2016. https://doi.org/10.1155/2016/3164312 Search in Google Scholar

Harith Z. T., Charalampopoulos D., Chatzifragkou A., Rapeseed meal hydrolysate as substrate for microbial astaxanthin production. Biochemical Engineering Journal 2019:151:107330. https://doi.org/10.1016/j.bej.2019.107330 Search in Google Scholar

Chong T. Y., Law M. C., Chan Y. S. The Potentials of Corn Waste Lignocellulosic Fibre as an Improved Reinforced Bioplastic Composites. Journal of Polymers and the Environment 2020:29:363–381. https://doi.org/10.1007/s10924-020-01888-4 Search in Google Scholar

Kumar P., Kim B. S. Paracoccus sp. Strain LL1 as a Single Cell Factory for the Conversion of Waste Cooking Oil to Polyhydroxyalkanoates and Carotenoids. Applied Food Biotechnology 2019:6:53–60. https://doi.org/10.22037/afb.v6i1.21628. Search in Google Scholar

Jinsong Y., Haisheng T., Rui Y., Xiaohuan S., Hairui Z., Kaimian L. Astaxanthin production by Phaffia rhodozyma fermentation of cassava residues substrate. Agricultural Engineering International: CIGR Journal 2011:13:1–6. Search in Google Scholar

Gervasi T., Santini A., Daliu P., Salem A. Z. M., Gervasi C., Pellizzeri V., Barrega L., De Pasquale P., Dugo G., Cicero N. Astaxanthin production by Xanthophyllomyces dendrorhous growing on a low cost substrate. Agroforestry Systems 2020:94:1229–1234. https://doi.org/10.1007/s10457-018-00344-6 Search in Google Scholar

Guo X., Li X., Xiao D. Optimization of culture conditions for production of astaxanthin by Phaffia rhodozyma. 4th International Conference on Bioinformatics and Biomedical Engineering. Chengdu, China, 2010:1-4. https://doi.org/10.1109/ICBBE.2010.5516101 Search in Google Scholar

Braunwald T., Schwemmlein L., Graeff-hönninger S., French W. T., Hernandez R., Holmes W. E. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Applied Microbiology and Biotechnology 2013:97:6581–6588. https://doi.org/10.1007/s00253-013-5005-8 Search in Google Scholar

Aksu Z., Tugba Eren A. Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process Biochemistry 2005:40:2985–2991. https://doi.org/10.1016/j.procbio.2005.01.011 Search in Google Scholar

Choudhari S. M., Ananthanarayan L., Singhal R. S. Use of metabolic stimulators and inhibitors for enhanced production of β-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresource Technology 2008:99(8):3166–3173. https://doi.org/10.1016/j.biortech.2007.05.051 Search in Google Scholar

Nasri Nasrabadi M. R., Razavi S. H. Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1. Journal of Bioscience and Bioengineering 2010:109(4):361–368. https://doi.org/10.1016/j.jbiosc.2009.10.013 Search in Google Scholar

Salehi Bakhtiyari A., Etemadifar Z., Borhani M. S. Use of response surface methodology to enhance carotenoid pigment production from Cellulosimicrobium strain AZ. SN Applied Sciences 2020:2:1–9. https://doi.org/10.1007/s42452-020-03549-6 Search in Google Scholar

Basiony M., Ouyang L., Wang D., Yu J., Zhou L., Zhu M., Wang X., Feng J., Dai J., Shen Y., Zhang C., Hua Q., Yang X., Zhang L. Optimization of microbial cell factories for astaxanthin production: Biosynthesis and regulations, engineering strategies and fermentation optimization strategies. Synthetic and Systems Biotechnology 2022:7:689–704. https://doi.org/10.1016/j.synbio.2022.01.002 Search in Google Scholar

Marova I., Carnecka M., Halienova A., Breierova E., Koci R. Production of Carotenoid-/Ergosterol-Supplemented Biomass by Red Yeast Rhodotorula glutinis Grown Under External Stress. Food Technology. Biotechnology 2010:48:56–61. Search in Google Scholar

Liu Y. S., Wu J. Y. Hydrogen peroxide-induced astaxanthin biosynthesis and catalase activity in Xanthophyllomyces dendrorhous. Applied Microbiology and Biotechnology 2006:73:663–668. https://doi.org/10.1007/s00253-006-0501-8 Search in Google Scholar

Zhang J., Li Q., Liu J., Lu Y., Wang Y., Wang Y. Astaxanthin overproduction and proteomic analysis of Phaffia rhodozyma under the oxidative stress induced by TiO2. Bioresource Technology 2020:311:123525. https://doi.org/10.1016/j.biortech.2020.123525 Search in Google Scholar

Pham K. D., Shida Y., Miyata A., Takamizawa T., Suzuki Y., Ara S., Yamazaki H., Masaki K., Mori K., Aburatani S., Hirakawa H., Tashiro K., Kuhara S., Takaku H., Ogasawara W. Effect of light on carotenoid and lipid production in the oleaginous yeast Rhodosporidium toruloides. Bioscience, Biotechnology, and Biochemistry 2020:84:1501–1512. https://doi.org/10.1080/09168451.2020.1740581 Search in Google Scholar

Cheng Y. T., Yang C. F. Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes. Journal of the Taiwan Institute of Chemical Engineers 2016:61:270–275. https://doi.org/10.1016/j.jtice.2015.12.027 Search in Google Scholar

Khomlaem C., Aloui H., Oh W. G., Kim B. S. High cell density culture of Paracoccus sp. LL1 in membrane bioreactor for enhanced co-production of polyhydroxyalkanoates and astaxanthin. International Journal of Biological Macromolecules 2021:192:289–297. https://doi.org/10.1016/j.ijbiomac.2021.09.180 Search in Google Scholar

Rostami F., Razavi S. H., Sepahi A. A., Gharibzahedi S. M. T. Canthaxanthin biosynthesis by Dietzia natronolimnaea HS-1: effects of inoculation and aeration rate. Brazilian Journal of Microbiology 2014:45:447–456. https://doi.org/10.1590/S1517-83822014005000046 Search in Google Scholar

Wang W., Yu L. Effects of oxygen supply on growth and carotenoids accumulation by Xanthophyllomyces dendrorhous. Zeitschrift fur Naturforschung – Section C Journal of Biosciences 2010:64:853–858. https://doi.org/10.1515/znc-2009-11-1216 Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other