Open Access

Overview of Solar Photovoltaic Applications for District Heating and Cooling


Cite

Dejean F. Trends and projections in Europe 2013. Tracking progress towards Europe’s climate and energy targets until 2020. 2020. Search in Google Scholar

BBC. Climate change: EU to cut CO2 emissions by 55% by 2030. BBC, Apr. 21, 2021. [Online]. [Accessed: 26.12.2022. Available: https://www.bbc.com/news/world-europe-56828383 Search in Google Scholar

European Commission. Heating and cooling. [Online]. [Accessed: 18.04.2023]. Available: https://energy.ec.europa.eu/topics/energy-efficiency/heating-and-cooling_en#documents Search in Google Scholar

Arlene Haas J. The Overlooked Benefits of District Energy Systems. [Online]. [Accessed: 02.11.2023]. Available: https://www.burnhamnationwide.com/final-review-blog/-benefits-of-district-energy-systems Search in Google Scholar

Lake A., Rezaie B., Beyerlein S. Review of district heating and cooling systems for a sustainable future. Renewable and Sustainable Energy Reviews 2017:67:417–425. https://doi.org/10.1016/j.rser.2016.09.061 Search in Google Scholar

Werner S. International review of district heating and cooling. Energy 2017:137:617–631. https://doi.org/10.1016/j.energy.2017.04.045 Search in Google Scholar

Lund H., et al. The status of 4th generation district heating: Research and results. Energy 2018:164:147–159. https://doi.org/10.1016/j.energy.2018.08.206 Search in Google Scholar

Averfalk H., Ingvarsson P., Persson U., Gong M., Werner S. Large heat pumps in Swedish district heating systems. Renewable and Sustainable Energy Reviews 2017:79:1275–1284. https://doi.org/10.1016/j.rser.2017.05.135 Search in Google Scholar

Jiang M., Rindt C., Smeulders D. M. J. Optimal Planning of Future District Heating Systems – A Review. Energies (Basel) 2022:15(19):7160. https://doi.org/10.3390/en15197160 Search in Google Scholar

Perez-Mora N., et al. Solar district heating and cooling: A review. Int J Energy Res 2018:42(4):1419–1441. https://doi.org/10.1002/er.3888 Search in Google Scholar

Dahash A., Ochs F., Janetti M. B., Streicher W. Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems. Appl Energy 2019:239. https://doi.org/10.1016/j.apenergy.2019.01.189 Search in Google Scholar

Rad F. M., Fung A. S. Solar community heating and cooling system with borehole thermal energy storage – Review of systems. Renewable and Sustainable Energy Reviews 2016:60:1550–1561. https://doi.org/10.1016/j.rser.2016.03.025 Search in Google Scholar

Kang A., Korolija I., Rovas D. Modeling of Photovoltaic-Thermal District Heating with Dual Thermal Modes. J Phys Conf Ser 2021:2042(1). https://doi.org/10.1088/1742-6596/2042/1/012090 Search in Google Scholar

Inayat A., Raza M. District cooling system via renewable energy sources: A review. Renewable and Sustainable Energy Reviews 2019:107:360–373. https://doi.org/10.1016/j.rser.2019.03.023 Search in Google Scholar

Latõšov E., Umbleja S., Volkova A. CO2 emission intensity of the Estonian DH sector. Smart Energy 2022:6:100070. https://doi.org/10.1016/j.segy.2022.100070 Search in Google Scholar

Lauka D., Slisane D., Ievina L., Muizniece I., Blumberga D. When Bioeconomy Development Becomes a Biomass Energy Competitor. Environmental and Climate Technologies 2019:23(3):347–359. https://doi.org/10.2478/rtuect-2019-0100 Search in Google Scholar

Kaķis R., Poļikarpova I., Pakere I., Blumberga D. Is It Possible to Obtain More Energy from Solar DH Field? Interpretation of Solar DH System Data. Environmental and Climate Technologies 2021:25(1):1284–1292. https://doi.org/10.2478/rtuect-2021-0097 Search in Google Scholar

Tschopp D., Tian Z., Berberich M., Fan J., Perers B., Furbo S. Large-scale solar thermal systems in leading countries: A review and comparative study of Denmark, China, Germany and Austria. Appl Energy 2020:270:114997. https://doi.org/10.1016/j.apenergy.2020.114997 Search in Google Scholar

Tian Z., et al. Large-scale solar district heating plants in Danish smart thermal grid: Developments and recent trends. Energy Convers Manag 2019:189:67–80. https://doi.org/10.1016/j.enconman.2019.03.071 Search in Google Scholar

Weiss W., Spörk-Dür M. Solar Heat Worldwide. 2023. [Online]. [Accessed: 05.11.2023]. Available: https://www.iea-shc.org/Data/Sites/1/publications/Solar-Heat-Worldwide-2023.pdf Search in Google Scholar

ur Rehman H., Hirvonen J., Kosonen R., Sirén K. Computational comparison of a novel decentralized photovoltaic district heating system against three optimized solar district systems. Energy Convers Manag 2019:191:39–54. https://doi.org/10.1016/j.enconman.2019.04.017 Search in Google Scholar

Carotenuto A., Figaj R. D., Vanoli L. A novel solar-geothermal district heating, cooling and domestic hot water system: Dynamic simulation and energy-economic analysis. Energy 2017:141:2652–2669. https://doi.org/10.1016/j.energy.2017.08.084 Search in Google Scholar

Hirvonen J., Sirén K. A novel fully electrified solar heating system with a high renewable fraction – Optimal designs for a high latitude community. Renew Energy 2018:127:298–309. https://doi.org/10.1016/j.renene.2018.04.028 Search in Google Scholar

Pieper H., Ommen T., Elmegaard B., Volkova A., Markussen W. B. Optimal Design and Dispatch of Electrically Driven Heat Pumps and Chillers for a New Development Area. Environmental and Climate Technologies 2020:24(3):470–482. https://doi.org/10.2478/rtuect-2020-0117 Search in Google Scholar

Ayadi O., Shadid R., Bani-Abdullah A., Alrbai M., Abu-Mualla M., Balah N. Experimental comparison between Monocrystalline, Polycrystalline, and Thin-film solar systems under sunny climatic conditions. Energy Reports 2022:8:218–230. https://doi.org/10.1016/j.egyr.2022.06.121 Search in Google Scholar

Cao S., Hasan A., Sirén K. Analysis and solution for renewable energy load matching for a single-family house. Energy Build 2013:65:398–411. https://doi.org/10.1016/j.enbuild.2013.06.013 Search in Google Scholar

Buffa S., Cozzini M., D’Antoni M., Baratieri M., Fedrizzi R. 5th generation district heating and cooling systems: A review of existing cases in Europe. Renewable and Sustainable Energy Reviews 2019:104:504–522. https://doi.org/10.1016/j.rser.2018.12.059 Search in Google Scholar

Zarate-Perez E., Rosales-Asensio E., González-Martínez A., de Simón-Martín M., Colmenar-Santos A. Battery energy storage performance in microgrids: A scientific mapping perspective. Energy Reports 2022:8(9):259–268. https://doi.org/10.1016/j.egyr.2022.06.116 Search in Google Scholar

Clarivate. Research Database in Web of Science – PVDHC. [Online]. [Accessed: 29.10.2023]. Available: https://www.webofscience.com/wos/woscc/summary/878b1326-1493-4b0b-af9b-393258d580b1-aef4e862/relevance/1 Search in Google Scholar

Clarivate. Research Database In Web of Science – Solar DHC. [Online]. [Accessed: 29.11.2023]. Available: https://www.webofscience.com/wos/woscc/summary/10d7831e-eb68-4c6f-89d1-150fe1c77196-b17a05c4/relevance/1 Search in Google Scholar

Sami S. A Predictive Numerical Model for Analyzing Performance of Solar Photovoltaic, Geothermal Hybrid System for Electricity Generation and District Heating. Science Journal of Energy Engineering 2017:5(1):13–30. https://doi.org/10.11648/j.sjee.20170501.12 Search in Google Scholar

Aste N., et al. A renewable energy scenario for a new low carbon settlement in northern Italy: Biomass district heating coupled with heat pump and solar photovoltaic system. Energy 2020:206:118091. https://doi.org/10.1016/j.energy.2020.118091 Search in Google Scholar

Quirosa G., Torres M., Chacartegui R. Analysis of the integration of photovoltaic excess into a 5th generation district heating and cooling system for network energy storage. Energy 2022:239:122202. https://doi.org/10.1016/j.energy.2021.122202 Search in Google Scholar

Ayele G. T., et al. Exergy analysis and thermo-economic optimization of a district heating network with solar-photovoltaic and heat pumps. [Online]. [Accessed: 29.11.2023]. Available: https://hal.archives-ouvertes.fr/hal-02291269 Search in Google Scholar

Sami S., Marin E. Simulation of Solar Photovoltaic, Biomass Gas Turbine and District Heating Hybrid System. International Journal of Sustainable Energy and Environmental Research 2017:6(1):9–26. https://doi.org/10.18488/journal.13.2017.61.9.26 Search in Google Scholar

Kallert A., Yu Y. J., Lounissi D., Bouaziz N., Daghsen K. Energy, exergy and environment analyses of a hybrid PV-system district heating system for a new household settlement in Germany. International Journal of Exergy 2022:38(3):267. https://doi.org/10.1504/IJEX.2022.10048871 Search in Google Scholar

Vivian J., Chinello M., Zarrella A., de Carli M. Investigation on Individual and Collective PV Self-Consumption for a Fifth Generation District Heating Network. Energies (Basel) 2022:15(3):1022. https://doi.org/10.3390/en15031022 Search in Google Scholar

Seidel P., Altenburger M., Seifert J., Potyka M. S. Potential assessment of coupling PV electricity with district heating supply of building. 2022: CLIMA 2022 The 14th REHVA HVAC World Congress. https://doi.org/10.34641/clima.2022.258 Search in Google Scholar

Lämmle M. Smart Urban Energy Concept: Integration of Heat Pumps, PV, Cogeneration, and District Heating in existing Multi-Family Buildings. International Solar Energy Society (ISES) 2021:1–5. https://doi.org/10.18086/eurosun.2020.02.04 Search in Google Scholar

Hałaj E., Kotyza J., Hajto M., Pełka G., Luboń W., Jastrzębski P. Upgrading a District Heating System by Means of the Integration of Modular Heat Pumps, Geothermal Waters, and PVs for Resilient and Sustainable Urban Energy. Energies (Basel) 2021:14(9):2347. https://doi.org/10.3390/en14092347 Search in Google Scholar

Ismaen R., Kucukvar M., El Mekkawy T. Y., Elomri A. Optimization and enviro-economic assessment of solar-cooling systems towards sustainable development: A case study of Qatar. J Clean Prod 2023:419:138253. https://doi.org/10.1016/j.jclepro.2023.138253 Search in Google Scholar

Keskin I., Soykan G. Distribution grid electrical performance and emission analysis of combined cooling, heating and power (CCHP)-photovoltaic (PV)-based data center and residential customers. J Clean Prod 2023:414:137448. https://doi.org/10.1016/j.jclepro.2023.137448 Search in Google Scholar

Al-Nini A., Ya H. H., Al-Mahbashi N., Hussin H. A Review on Green Cooling: Exploring the Benefits of Sustainable Energy-Powered District Cooling with Thermal Energy Storage. Sustainability 2023:15(6):5433. https://doi.org/10.3390/su15065433 Search in Google Scholar

Novosel T., Feijoo F., Duić N., Domac J. Impact of district heating and cooling on the potential for the integration of variable renewable energy sources in mild and Mediterranean climates. Energy Convers Manag 2022:272:116374. https://doi.org/10.1016/j.enconman.2022.116374 Search in Google Scholar

Słomczyńska K., Mirek P., Panowski M. Solar Heating for Pit Thermal Energy Storage – Comparison of Solar Thermal and Photovoltaic Systems in TRNSYS 18. Advances in Science and Technology Research Journal 2022:16(5):40–51. https://doi.org/10.12913/22998624/153015 Search in Google Scholar

Kang A., Korolija I., Rovas D. Photovoltaic Thermal District Heating: A review of the current status, opportunities and prospects. Appl Therm Eng 2022:217:119051. https://doi.org/10.1016/j.applthermaleng.2022.119051 Search in Google Scholar

Al-Sayyab A. K. S., Navarro-Esbrí J., Barragán-Cervera A., Mota-Babiloni A. Techno-economic analysis of a PV/T waste heat–driven compound ejector-heat pump for simultaneous data centre cooling and district heating using low global warming potential refrigerants. Mitig Adapt Strateg Glob Chang 2022:27(7). https://doi.org/10.1007/s11027-022-10017-6 Search in Google Scholar

Barbu M., Minciuc E., Frusescu D. C., Tutica D. Integration of Hybrid Photovoltaic Thermal Panels (PVT) in the District Heating System of Bucharest, Romania. In 10th International Conference on Energy and Environment (CIEM), IEEE, Oct. 2021. https://doi.org/10.1109/CIEM52821.2021.9614721 Search in Google Scholar

Pardo García N., Zubi G., Pasaoglu G., Dufo-López R. Photovoltaic thermal hybrid solar collector and district heating configurations for a Central European multi-family house. Energy Convers Manag 2017:148:915–924. https://doi.org/10.1016/j.enconman.2017.05.065 Search in Google Scholar

Mi P., Zhang J., Han Y., Guo X. Study on energy efficiency and economic performance of district heating system of energy saving reconstruction with photovoltaic thermal heat pump. Energy Convers Manag 2021:247:114677. https://doi.org/10.1016/j.enconman.2021.114677 Search in Google Scholar

Pakere I., Lauka D., Blumberga D. Solar power and heat production via photovoltaic thermal panels for district heating and industrial plant. Energy 2018:154:424–432. https://doi.org/10.1016/j.energy.2018.04.138 Search in Google Scholar

Lepiksaar K., Kalme K., Siirde A., Volkova A. Heat Pump Use in Rural District Heating Networks in Estonia. Environmental and Climate Technologies 2021:25(1):786–802. https://doi.org/10.2478/rtuect-2021-0059 Search in Google Scholar

IEA. Renewables 2021. 2022. [Online]. [Accessed: 29.01.2023]. Available: https://www.iea.org/reports/renewables-2021 Search in Google Scholar

PV Europe. My-PV: Evaluation of housing project shows performance of power2heat. [Online]. [Accessed: 29.01.2023]. Available: https://www.pveurope.eu/power2heat/austria-my-pv-evaluation-housing-project-shows-performance-power2heat Search in Google Scholar

Abokersh M. H., Saikia K., Cabeza L. F., Boer D., Vallès M. Flexible heat pump integration to improve sustainable transition toward 4th generation district heating. Energy Convers Manag 2020:225:113379. https://doi.org/10.1016/j.enconman.2020.113379 Search in Google Scholar

Maximov S. A., Mehmood S., Friedrich D. Multi-objective optimisation of a solar district heating network with seasonal storage for conditions in cities of southern Chile . Sustain Cities Soc 2021:73:103087. https://doi.org/10.1016/j.scs.2021.103087 Search in Google Scholar

Feofilovs M., Pakere I., Romagnoli F. Life Cycle Assessment of Different Low-Temperature District Heating Development Scenarios: A Case Study of Municipality in Latvia. Environmental and Climate Technologies 2019:23(2):272–290. https://doi.org/10.2478/rtuect-2019-0068 Search in Google Scholar

González A., Riba J.-R., Rius A. Combined heat and power design based on environmental and cost criteria. Energy 2016:116:922–932. https://doi.org/10.1016/j.energy.2016.10.025 Search in Google Scholar

Pardo García N., Zubi G., Pasaoglu G., Dufo-López R. Photovoltaic thermal hybrid solar collector and district heating configurations for a Central European multi-family house. Energy Convers Manag 2017:148:915–924. https://doi.org/10.1016/j.enconman.2017.05.065 Search in Google Scholar

Calise F., Cappiello F. L., Dentice M. d’Accadia, Vicidomini M. A novel smart energy network paradigm integrating combined heat and power, photovoltaic and electric vehicles. Energy Convers Manag 2022:260:115599. https://doi.org/10.1016/j.enconman.2022.115599 Search in Google Scholar

Revesz A., et al. Developing novel 5th generation district energy networks. Energy 2020:201:117389. https://doi.org/10.1016/j.energy.2020.117389 Search in Google Scholar

Wirtz M., Kivilip L., Remmen P., Müller D. 5th Generation District Heating: A novel design approach based on mathematical optimization. Appl Energy 2020:260:114158. https://doi.org/10.1016/j.apenergy.2019.114158 Search in Google Scholar

Ismaen R., ElMekkawy T. Y., Pokharel S., Elomri A., Al-Salem M. Solar Technology and District Cooling System in a Hot Climate Regions: Optimal Configuration and Technology Selection. Energies (Basel) 2022:15(7):2657. https://doi.org/10.3390/en15072657 Search in Google Scholar

Comodi G., Bartolini A., Carducci F., Nagaranjan B., Romagnoli A. Achieving low carbon local energy communities in hot climates by exploiting networks synergies in multi energy systems. Appl Energy 2019:256:113901. https://doi.org/10.1016/j.apenergy.2019.113901 Search in Google Scholar

Volkova A., Pakere I., Murauskaite L., Huang P., Lepiksaar K., Zhang X. 5th generation district heating and cooling (5GDHC) implementation potential in urban areas with existing district heating systems. Energy Reports 2022:8:10037–10047. https://doi.org/10.1016/j.egyr.2022.07.162 Search in Google Scholar

Puschnigg S., Jauschnik G., Moser S., Volkova A., Linhart M. A review of low-temperature sub-networks in existing district heating networks: examples, conditions, replicability. Energy Reports 2021:7:18–26. https://doi.org/10.1016/j.egyr.2021.09.044 Search in Google Scholar

Euroheat & Power. DHC Market Outlook. 2022. [Online]. [Accessed: 29.01.2023]. Available: https://www.euroheat.org/static/cb513adb-3825-4060-8c0883af1be7a0a2/e4e11303-9e7f-4874-888df9efa4c44c20/DHC-Market-Outlook.pdf Search in Google Scholar

Chung J., Sukumaran S., Hlebnikov A., Volkova A. Design and Development of a Conceptual Solar Energy Laboratory for District Heating Applications. Solar 2023:3(3):504–521. https://doi.org/10.3390/solar3030028 Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other