Open Access

Sustaining a Mars Colony through Integration of Single-Cell Oil in Biological Life Support Systems


Cite

McNulty M. J., et al. Molecular pharming to support human life on the moon, mars, and beyond. Critical Reviews in Biotechnology 2021:41(6):849–864. https://doi.org/10.1080/07388551.2021.1888070 Search in Google Scholar

Fabris M., et al. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. Frontiers in Plant Science 2020:11. https://doi.org/10.3389/fpls.2020.00279 Search in Google Scholar

Clément G. Fundamentals of Space Medicine. Springer Science & Business Media, 2011. https://doi.org/10.1007/978-1-4419-9905-4 Search in Google Scholar

Zubrin R. Why We Earthlings Should Colonize Mars! Theology and Science 2019:17(3):305–316. https://doi.org/10.1080/14746700.2019.1632519 Search in Google Scholar

Geology of the InSight landing site on Mars | Nature Communications. [Online]. [Accessed: 31.03.2023]. Available: https://www.nature.com/articles/s41467-020-14679-1 Search in Google Scholar

Taylor G. J. The bulk composition of Mars. Geochemistry 2013:73(4):401–420. https://doi.org/10.1016/j.chemer.2013.09.006 Search in Google Scholar

Schulze-Makuch D., Davies P. Destination Mars: Colonization via Initial One-way Missions. Journal of the British Interplanetary Society 2013:66:11–14. Search in Google Scholar

Zubrin R. The Economic Viability of Mars Colonization. In Deep Space Commodities, T. James, Ed., Cham: Springer International Publishing, 2018:159–180. https://doi.org/10.1007/978-3-319-90303-3_12 Search in Google Scholar

Zubrin R. The Case for Colonizing Mars. Ad Astra: The Magazine of the National Space Society 1996. [Online]. [Accessed: 31.03.2023]. Available: https://home.ifa.hawaii.edu/users/meech/a281/handouts/mars_case.pdf Search in Google Scholar

Stoker C. R., McKay C. P., Haberle R. M., Andersen D. T. Science strategy for human exploration of Mars. Advances in Space Research 1992:12(4):79–90. https://doi.org/10.1016/0273-1177(92)90159-U Search in Google Scholar

Uphoff C., Roberts P. h., Friedman L. d. Orbit Design Concepts for Jupiter Orbiter Missions. Journal of Spacecraft and Rockets 1976:13(6):348–355. https://doi.org/10.2514/3.57096 Search in Google Scholar

Petrescu R. V., Aversa R., Apicella A., Petrescu F. I. NASA Selects Concepts for a New Mission to Titan, the Moon of Saturn. Journal of Aircraft and Spacecraft Technology 2018:2(1). https://doi.org/10.3844/jastsp.2018.40.52 Search in Google Scholar

Phillips C. B., Pappalardo R. T. Europa Clipper Mission Concept: Exploring Jupiter’s Ocean Moon. Eos, Transactions American Geophysical Union 2014:95(20):165–167. https://doi.org/10.1002/2014EO200002 Search in Google Scholar

González-Galindo F., Forget F., López-Valverde M. A., Angelats i Coll M., Millour E. A ground‐to‐exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. Journal of Geophysical Research: Planets 2009:114(E4). https://doi.org/10.1029/2008JE003246 Search in Google Scholar

Gierasch P. J., Toon O. B. Atmospheric Pressure Variation and the Climate of Mars. Journal of the Atmospheric Sciences 1973:30(8):1502–1508. https://doi.org/10.1175/1520-0469(1973)030<1502:APVATC>2.0.CO;2 Search in Google Scholar

Nazari-Sharabian M., Aghababaei M., Karakouzian M., Karami M. Water on Mars—A Literature Review. Galaxies 2020:8(2):40. https://doi.org/10.3390/galaxies8020040 Search in Google Scholar

Levchenko I., Xu S., Mazouffre S., Keidar M., Bazaka K. Mars Colonization: Beyond Getting There. In Terraforming Mars, John Wiley & Sons, Ltd, 2021:73–98. https://doi.org/10.1002/9781119761990.ch5 Search in Google Scholar

esa.int. The European Space Agency. The European Space Agency. [Online]. [Accessed: 27.04.2023]. Available: https://www.esa.int/ Search in Google Scholar

mars.nasa.gov. Missions. Mars Exploration Section. NASA Mars Exploration. [Online]. [Accessed: 27.04.2023]. Available: https://mars.nasa.gov/mars-exploration/missions?page=0&per_page=99&order=date+desc&search Search in Google Scholar

spacex.com. SpaceX Human Spaceflight. Mars. Spacex. [Online]. [Accessed: 27.04.2023]. Available: https://www.spacex.com/human-spaceflight/mars/ Search in Google Scholar

mars.nasa.gov. Mars 2020. Mission Perseverance rover blog. NASA Mars 2020 Mission. [Online]. [Accessed: 27.04.2023]. Available: https://mars.nasa.gov/mars2020/mission/status/ Search in Google Scholar

mars.nasa.gov. Science and Exploration. ExoMars mission. The European Space Agency. [Online]. [Accessed: 27.04.2023]. Available: https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/ExoMars_mission Search in Google Scholar

Trainer M. G., et al. Seasonal Variations in Atmospheric Composition as Measured in Gale Crater, Mars. Journal of Geophysical Research: Planets 2019:124(11):3000–3024. https://doi.org/10.1029/2019JE006175 Search in Google Scholar

Drysdale A. E., Ewert M. K., Hanford A. J. Life support approaches for Mars missions. Advances in Space Research 2003:31(1):51–61. https://doi.org/10.1016/S0273-1177(02)00658-0 Search in Google Scholar

Jones H. W., Hodgson E. W., Kliss M. H. Life Support for Deep Space and Mars. In International Conference on Environmental Systems. Tucson, Arizona, Jul. 2014. [Online]. [Accessed: 27.04.2023]. Available: https://ttu-ir.tdl.org/bitstream/handle/2346/59729/ICES-2014-74.pdf?sequence=1&isAllowed=y Search in Google Scholar

Appelbaum J., Flood D. J. Solar radiation on Mars. Solar Energy 1990:45(6):353–363. https://doi.org/10.1016/0038-092X(90)90156-7 Search in Google Scholar

Lucchitta B. K. Mars and Earth: Comparison of cold-climate features. Icarus 1981:45(2):264–303. https://doi.org/10.1016/0019-1035(81)90035-X Search in Google Scholar

Fogg M. J. Terraforming Mars: A review of current research. Advances in Space Research 1998:22(3):415–420. https://doi.org/10.1016/S0273-1177(98)00166-5 Search in Google Scholar

Szocik K. Should and could humans go to Mars? Yes, but not now and not in the near future. Futures 2019:105:54–66. https://doi.org/10.1016/j.futures.2018.08.004 Search in Google Scholar

Berliner A. J., et al. Towards a Biomanufactory on Mars. Frontiers in Astronomy and Space Sciences 2021:8. [Online]. [Accessed: 27.04.2023]. Available: https://www.frontiersin.org/articles/10.3389/fspas.2021.711550 Search in Google Scholar

Towards synthetic biological approaches to resource utilization on space missions. [Online]. [Accessed: 25.01.2023]. Available: https://royalsocietypublishing.org/doi/epdf/10.1098/rsif.2014.0715 Search in Google Scholar

Menezes A. A., Montague M. G., Cumbers J., Hogan J. A., Arkin A. P. Grand challenges in space synthetic biology. Journal of The Royal Society Interface 2015:12(113):20150803. https://doi.org/10.1098/rsif.2015.0803 Search in Google Scholar

What Would Battery Manufacturing Look Like on the Moon and Mars? ACS Energy Letters. [Online]. [Accessed: 31.03.2023]. Available: https://pubs.acs.org/doi/10.1021/acsenergylett.2c02743 Search in Google Scholar

Douglas G. L., Zwart S. R., Smith S. M. Space Food for Thought: Challenges and Considerations for Food and Nutrition on Exploration Missions. The Journal of Nutrition 2020:150(9):2242–2244. https://doi.org/10.1093/jn/nxaa188 Search in Google Scholar

Mitchell C. Bioregenerative life-support systems. The American Journal of Clinical Nutrition 1994:60(5):820S–824S. https://doi.org/10.1093/ajcn/60.5.820S Search in Google Scholar

Wamelink G. W. W., Frissel J. Y., Krijnen W. H. J., Verwoert M. R., Goedhart P. W. Can Plants Grow on Mars and the Moon: A Growth Experiment on Mars and Moon Soil Simulants. PLOS ONE 2014:9(8):e103138. https://doi.org/10.1371/journal.pone.0103138 Search in Google Scholar

Tang H., Rising H. H., Majji M., Brown R. D. Long-Term Space Nutrition: A Scoping Review. Nutrients 2022:14(1). https://doi.org/10.3390/nu14010194 Search in Google Scholar

Cannon K. M., Britt, D. T. Feeding One Million People on Mars. New Space 2019:7(4):245–254. https://doi.org/10.1089/space.2019.0018 Search in Google Scholar

MacElroy R. D., Bredt J. Current concepts and future directions of CELSS. Advances in Space Research 1984:4(12):221–229. https://doi.org/10.1016/0273-1177(84)90566-0 Search in Google Scholar

Chow Y. N., Lee L. K., Zakaria N., Foo K. Y. New emerging hydroponic system. Symposium on Innovation and Creativity 2017:2:1–4. Search in Google Scholar

Sadler P., et al. Bio-regenerative Life Support Systems for Space Surface Applications. In 41st International Conference on Environmental Systems. Portland, Oregon: American Institute of Aeronautics and Astronautics, Jul. 2011. https://doi.org/10.2514/6.2011-5133 Search in Google Scholar

Sanders G. B., et al., Results from the NASA Capability Roadmap Team for In-Situ Resource Utilization (ISRU). Presented at the International Lunar Conference 2005, Toronto, Sep. 2005. [Online]. [Accessed: 31.03.2023]. Available: https://ntrs.nasa.gov/citations/20110024178 Search in Google Scholar

Berla B. M., Saha R., Immethun C. M., Maranas C. D., Moon T. S., Pakrasi H. B. Synthetic biology of cyanobacteria: unique challenges and opportunities. Front. Microbiol. 2013:4. https://doi.org/10.3389/fmicb.2013.00246 Search in Google Scholar

Mars Solar Power. 2nd International Energy Conversion Engineering Conference (IECEC). Providence, Rhode Islands, 2004. [Online]. [Accessed: 31.03.2023]. Available: https://arc.aiaa.org/doi/abs/10.2514/6.2004-5555 Search in Google Scholar

Space nuclear power. An overview. Journal of Propulsion and Power 1996:12(5). https://doi.org/10.2514/3.24121 Search in Google Scholar

Fogg M. J. The utility of geothermal energy on mars. Journal of the British Interplanetary Society 1996:49:403–422. Search in Google Scholar

Brennan L., Owende P. Biofuels from microalgae – A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews 2010:14(2):557–577. https://doi.org/10.1016/j.rser.2009.10.009 Search in Google Scholar

Kruyer N. S., Realff M. J., Sun W., Genzale C. L., Peralta-Yahya P. Designing the bioproduction of Martian rocket propellant via a biotechnology-enabled in situ resource utilization strategy. Nature Communications 2021:12:6166. https://doi.org/10.1038/s41467-021-26393-7 Search in Google Scholar

Fahrion J., Mastroleo F., Dussap C.-G., Leys N. Use of Photobioreactors in Regenerative Life Support Systems for Human Space Exploration. Frontiers in Microbiology 2021:12. https://doi.org/10.3389/fmicb.2021.699525 Search in Google Scholar

Donald Rapp, Ed., Use of extraterrestrial resources for human space missions to moon or mars. Second. New York, NY: Springer Berlin Heidelberg, 2018. https://doi.org/10.1007/978-3-319-72694-6 Search in Google Scholar

Mapstone L. J., Leite M. N., Purton S., Crawford I. A., Dartnell L. Cyanobacteria and microalgae in supporting human habitation on Mars. Biotechnology Advances 2022:59:107946. https://doi.org/10.1016/j.biotechadv.2022.107946 Search in Google Scholar

Murukesan G., et al. Pressurized Martian-Like Pure CO2 Atmosphere Supports Strong Growth of Cyanobacteria, and Causes Significant Changes in their Metabolism. Origins of Life and Evolution of Biospheres 2016:46(1):119–131. https://doi.org/10.1007/s11084-015-9458-x Search in Google Scholar

Keller R., Goli K., Porter W., Alrabaa A., Jones J. A. Cyanobacteria and Algal-Based Biological Life Support System (BLSS) and Planetary Surface Atmospheric Revitalizing Bioreactor Brief Concept Review. Life 2023:13(3):816. https://doi.org/10.3390/life13030816 Search in Google Scholar

Uyeda C., Thangavelu M. Creating Human Experience through Food in Space (C.H.E.F.). In AIAA SCITECH 2023 Forum, American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2023-0264 Search in Google Scholar

Miranda C. SARSEF Science and Engineering Fair 2023. Search in Google Scholar

Menezes A. A., Cumbers J., Hogan J. A., Arkin A. P. Towards synthetic biological approaches to resource utilization on space missions. J. R. Soc. Interface 2015:12(102):20140715. https://doi.org/10.1098/rsif.2014.0715 Search in Google Scholar

Averesch N. J. H. Choice of Microbial System for In-Situ Resource Utilization on Mars. Front. Astron. Space Sci. 2021:8:700370. https://doi.org/10.3389/fspas.2021.700370 Search in Google Scholar

Tarasashvili M. Mars Terraformation Autotrophs – Cultivation and Transplantation Methods. 2015. Search in Google Scholar

Watkins P., Hughes J., Gamage T. V., Knoerzer K., Ferlazzo M. L., Banati R. B. Long term food stability for extended space missions: a review. Life Sciences in Space Research 2022:32:79–95. https://doi.org/10.1016/j.lssr.2021.12.003 Search in Google Scholar

Zabel P., Bamsey M., Schubert D., Tajmar M. Review and analysis of over 40 years of space plant growth systems. Life Sciences in Space Research 2016:10:1–16. https://doi.org/10.1016/j.lssr.2016.06.004 Search in Google Scholar

Asao T. Hydroponics: A Standard Methodology for Plant Biological Researches. BoD – Books on Demand, 2012. https://doi.org/10.5772/2215 Search in Google Scholar

Srivani P., Yamuna Devi C., Manjula C. H. A Controlled Environment Agriculture with Hydroponics: Variants, Parameters, Methodologies and Challenges for Smart Farming. IEEE Conference Publication. IEEE Xplore. [Online]. [Accessed: 31.03.2023]. Available: https://ieeexplore.ieee.org/abstract/document/9092043 Search in Google Scholar

Ferl R. J., Schuerger A. C., Paul A.-L., Gurley W. B., Corey K., Bucklin R. Plant adaptation to low atmospheric pressures: potential molecular responses. Life Support & Biosphere Science 2002:8(2):93–101. Search in Google Scholar

Exploration Systems Requirements to Establish a Sustainable Human Presence on Mars. AIAA SPACE Forum. [Online]. [Accessed: 31.03.2023]. Available: https://arc.aiaa.org/doi/10.2514/6.2017-5367 Search in Google Scholar

Gurlek C., Yarkent C., Oral I., Kose A., Oncel S. S. Nutraceutical Aspects of Microalgae: Will Our Future Space Foods Be Microalgae Based? In Handbook of Algal Technologies and Phytochemicals, CRC Press, 2019. https://doi.org/10.1201/9780429054242-18 Search in Google Scholar

Kuhad R. C., Singh A., Tripathi K. K., Saxena R. K., Eriksson K.-E. L. Microorganisms as an Alternative Source of Protein. Nutrition Reviews 1997:55(3):65–75. https://doi.org/10.1111/j.1753-4887.1997.tb01599.x Search in Google Scholar

Moreira J. B. et al. Microalgae Polysaccharides: An Alternative Source for Food Production and Sustainable Agriculture. Polysaccharides 2022:3(2). https://doi.org/10.3390/polysaccharides3020027 Search in Google Scholar

Vazhappilly R., Chen F. Heterotrophic Production Potential of Omega-3 Polyunsaturated Fatty Acids by Microalgae and Algae-like Microorganisms. Botanica Marina 1998:41:1–6:553–558. https://doi.org/10.1515/botm.1998.41.1-6.553 Search in Google Scholar

Vaz B. da S., Moreira J. B., de Morais M. G., Costa J. A. V. Microalgae as a new source of bioactive compounds in food supplements. Current Opinion in Food Science 2016:7:73–77. https://doi.org/10.1016/j.cofs.2015.12.006 Search in Google Scholar

Clauwaert P., et al. Nitrogen cycling in Bioregenerative Life Support Systems: Challenges for waste refinery and food production processes. Progress in Aerospace Sciences 2017:91:87–98. https://doi.org/10.1016/j.paerosci.2017.04.002 Search in Google Scholar

Montague M., et al. The Role of Synthetic Biology for In Situ Resource Utilization (ISRU). Astrobiology 2012:12(12):1135–1142. https://doi.org/10.1089/ast.2012.0829 Search in Google Scholar

Verseux C., Baqué M., Lehto K., de Vera J.-P. P., Rothschild L. J., Billi D. Sustainable life support on Mars – the potential roles of cyanobacteria. International Journal of Astrobiology 2016:15(1):65–92. https://doi.org/10.1017/S147355041500021X Search in Google Scholar

Verseux C., et al. A Low-Pressure, N2/CO2 Atmosphere Is Suitable for Cyanobacterium-Based Life-Support Systems on Mars. Frontiers in Microbiology 2021:12. https://doi.org/10.3389/fmicb.2021.611798 Search in Google Scholar

Bothe H., Schmitz O., Yates M. G., Newton W. E. Nitrogen Fixation and Hydrogen Metabolism in Cyanobacteria. Microbiol Mol Biol Rev 2010:74(4):529–551. https://doi.org/10.1128/MMBR.00033-10 Search in Google Scholar

Guerra V., Silva T., Guaitella O. Living on mars: how to produce oxygen and fuel to get home. Europhysics News 2018:49(3):15–18. https://doi.org/10.1051/epn/2018302 Search in Google Scholar

The renaissance of the Sabatier reaction and its applications on Earth and in space. Nature Catalysis. [Online]. [Accessed: 31.03.2023]. Available: https://www.nature.com/articles/s41929-019-0244-4 Search in Google Scholar

Zheng Y., Chen Z., Zhang J. Solid Oxide Electrolysis of H2O and CO2 to Produce Hydrogen and Low-Carbon Fuels. Electrochem. Energ. Rev. 2021:4(3):508–517. https://doi.org/10.1007/s41918-021-00097-4 Search in Google Scholar

Slenzka K., Kempf J. Bio-ISRU Concepts using microorganisms to release O2 and H2 on Moon and Mars. 2010:38:3. Search in Google Scholar

Zaccardi F., Toto E., Santonicola M. G., Laurenzi S. 3D printing of radiation shielding polyethylene composites filled with Martian regolith simulant using fused filament fabrication. Acta Astronautica 2022:190:1–13. https://doi.org/10.1016/j.actaastro.2021.09.040 Search in Google Scholar

Onen Cinar S., Chong Z. K., Kucuker M. A., Wieczorek N., Cengiz U., Kuchta K. Bioplastic Production from Microalgae: A Review. International Journal of Environmental Research and Public Health 2020:17(11). https://doi.org/10.3390/ijerph17113842 Search in Google Scholar

Borowitzka M. A. Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology 1995:7(1):3–15. https://doi.org/10.1007/BF00003544 Search in Google Scholar

Kumar K., Dasgupta C. N., Nayak B., Lindblad P., Das D. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology 2011:102(8):4945–4953. https://doi.org/10.1016/j.biortech.2011.01.054 Search in Google Scholar

Luo H.-P., Al-Dahhan M. H. Airlift column photobioreactors for Porphyridium sp. culturing: Part I. effects of hydrodynamics and reactor geometry. Biotechnology and Bioengineering 2012:109(4):932–941. https://doi.org/10.1002/bit.24361 Search in Google Scholar

Abu-Ghosh S., Fixler D., Dubinsky Z., Iluz D. Flashing light in microalgae biotechnology. Bioresource Technology 2016:203:357–363. https://doi.org/10.1016/j.biortech.2015.12.057 Search in Google Scholar

Chamizo S., Mugnai G., Rossi F., Certini G., De Philippis R. Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration. Front. Environ. Sci. 2018:6:49. https://doi.org/10.3389/fenvs.2018.00049 Search in Google Scholar

Billi D., Verseux C., Fagliarone C., Napoli A., Baqué M., De Vera J.-P. A Desert Cyanobacterium under Simulated Mars-like Conditions in Low Earth Orbit: Implications for the Habitability of Mars. Astrobiology 2019:19(2):158–169. https://doi.org/10.1089/ast.2017.1807 Search in Google Scholar

Napoli A., et al. Absence of increased genomic variants in the cyanobacterium Chroococcidiopsis exposed to Mars-like conditions outside the space station. Sci Rep 2022:12(1):8437. https://doi.org/10.1038/s41598-022-12631-5 Search in Google Scholar

Billi D. Challenging the Survival Thresholds of a Desert Cyanobacterium under Laboratory Simulated and Space Conditions. In Extremophiles as Astrobiological Models, Seckbach J., Stan‐Lotter H., Eds., 1st ed. Wiley, 2020, pp. 183–195. https://doi.org/10.1002/9781119593096.ch8 Search in Google Scholar

Helisch H., et al. High density long-term cultivation of Chlorella vulgaris SAG 211-12 in a novel microgravity-capable membrane raceway photobioreactor for future bioregenerative life support in SPACE. Life Sciences in Space Research 2020:24:91–107. https://doi.org/10.1016/j.lssr.2019.08.001 Search in Google Scholar

Thomas D. J., Sullivan S. L., Price A. L., Zimmerman S. M. Common Freshwater Cyanobacteria Grow in 100 % CO2. Astrobiology 2005:5(1):66–74. https://doi.org/10.1089/ast.2005.5.66 Search in Google Scholar

Fajardo C., Donato M., Carrasco R., Martínez‐Rodríguez G., Mancera J. M., Fernández‐Acero F. J. Advances and challenges in genetic engineering of microalgae. Rev Aquacult 2020:12(1):365–381. https://doi.org/10.1111/raq.12322 Search in Google Scholar

Detrell G. Chlorella Vulgaris Photobioreactor for Oxygen and Food Production on a Moon Base – Potential and Challenges. Front. Astron. Space Sci. 2021:8:700579. https://doi.org/10.3389/fspas.2021.700579 Search in Google Scholar

Grosshagauer S., Kraemer K., Somoza V. The True Value of Spirulina. J. Agric. Food Chem. 2020:68(14):4109–4115. https://doi.org/10.1021/acs.jafc.9b08251 Search in Google Scholar

Ahmed B., Sultana S. A Critical Review on PLA-Algae Composite: Chemistry, Mechanical, and Thermal Properties. Journal of Textile Science & Engineering 2021:10(7). https://doi.org/10.37421/jtese.2020.10.425 Search in Google Scholar

Mona S., et al. Green technology for sustainable biohydrogen production (waste to energy): A review. Science of the Total Environment 2020:728:138481. https://doi.org/10.1016/j.scitotenv.2020.138481 Search in Google Scholar

Macário I. P. E., et al. Cyanobacteria as Candidates to Support Mars Colonization: Growth and Biofertilization Potential Using Mars Regolith as a Resource. Front. Microbiol. 2022:13:840098. https://doi.org/10.3389/fmicb.2022.840098 Search in Google Scholar

Do Nascimento M., Battaglia M. E., Sanchez Rizza L., Ambrosio R., Arruebarrena Di Palma A., Curatti L. Prospects of using biomass of N2-fixing cyanobacteria as an organic fertilizer and soil conditioner. Algal Research 2019:43:101652. https://doi.org/10.1016/j.algal.2019.101652 Search in Google Scholar

Fernandez B. G., Rothschild L. J., Fagliarone C., Chiavarini S., Billi D. Feasibility as feedstock of the cyanobacterium Chroococcidiopsis sp. 029 cultivated with urine-supplemented moon and mars regolith simulants. Algal Research 2023:71:103044. https://doi.org/10.1016/j.algal.2023.103044 Search in Google Scholar

Cuellar-Bermudez S. P., et al. Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Research 2017:24(B):438–449. https://doi.org/10.1016/j.algal.2016.08.018 Search in Google Scholar

Fais G., et al. Wide Range Applications of Spirulina: From Earth to Space Missions. Marine Drugs 2022:20(5):299. https://doi.org/10.3390/md20050299 Search in Google Scholar

Jaatinen S., Lakaniemi A.-M., Rintala J. Use of diluted urine for cultivation of Chlorella vulgaris. Environmental Technology 2016:37(9):1159–1170. https://doi.org/10.1080/09593330.2015.1105300 Search in Google Scholar

Lafarga T., Fernández-Sevilla J. M., González-López C., Acién-Fernández F. G. Spirulina for the food and functional food industries. Food Research International 2020:137:109356. https://doi.org/10.1016/j.foodres.2020.109356 Search in Google Scholar

Markou G., Chatzipavlidis I., Georgakakis D. Effects of phosphorus concentration and light intensity on the biomass composition of Arthrospira (Spirulina) platensis. World J Microbiol Biotechnol 2012:28(8):2661–2670. https://doi.org/10.1007/s11274-012-1076-4 Search in Google Scholar

Markou G. Alteration of the biomass composition of Arthrospira (Spirulina) platensis under various amounts of limited phosphorus. Bioresource Technology 2012:116:533–535. https://doi.org/10.1016/j.biortech.2012.04.022 Search in Google Scholar

Lai Y. H., Puspanadan S., Lee C. K. Nutritional optimization of Arthrospira platensis for starch and Total carbohydrates production. Biotechnol Progress 2019:35(3):e2798. https://doi.org/10.1002/btpr.2798 Search in Google Scholar

Wiebe M. G. QuornTM Myco-protein – Overview of a successful fungal product. Mycologist 2004:18(1):17–20. https://doi.org/10.1017/S0269915X04001089 Search in Google Scholar

What is Mycoprotein. Marlow Food Ltd. [Online]. [Accessed: 28.04.2023]. Available: https://web.archive.org/web/20140116203433/http://www.mycoprotein.org/assets/ALFT_V2_2.pdf# Search in Google Scholar

Vegetarian Mince. Marlow Food Ltd. [Online]. [Accessed: 28.04.2023]. Available: https://web.archive.org/web/20130903011201/http://www.quorn.co.uk/food/cook-from-scratch/vegetarian-mince/# Search in Google Scholar

Mapstone L. Nutritional profiles of Spirulina, Chlorella, Durum Wheat, Sweet Potato and the House Cricket. Mendeley Data, V2, 2021. https://doi.org/10.17632/3MH8M429PV.2 Search in Google Scholar

Tuomisto H. L. Food Security and Protein Supply -Cultured meat a solution? in Delivering Food Security with Supply Chain Led Innovations: understanding supply chains, providing food security, delivering choice, London, 7–9 September. [Online]. [Accessed: 28.04.2023]. Available: https://staticmer.emol.cl/Documentos/Campo/2011/08/02/20110802122710.pdf Search in Google Scholar

Aikawa S., et al. Direct conversion of Spirulina to ethanol without pretreatment or enzymatic hydrolysis processes. Energy Environ. Sci. 2013:6(6):1844. https://doi.org/10.1039/c3ee40305j Search in Google Scholar

Weiss T. L., Young E. J., Ducat D. C. A synthetic, light-driven consortium of cyanobacteria and heterotrophic bacteria enables stable polyhydroxybutyrate production. Metabolic Engineering 2017:44:236–245. https://doi.org/10.1016/j.ymben.2017.10.009 Search in Google Scholar

Fedeson D. T., Saake P., Calero P., Nikel P. I., Ducat D. C. Biotransformation of 2,4-dinitrotoluene in a phototrophic co-culture of engineered Synechococcus elongatus and Pseudomonas putida. Microbial Biotechnology 2020:13(4):997–1011. https://doi.org/10.1111/1751-7915.13544 Search in Google Scholar

Mollers K. B., Cannella D., Jorgensen H., Frigaard N.-U. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. Biotechnol Biofuels 2014:7(1):64. https://doi.org/10.1186/1754-6834-7-64 Search in Google Scholar

Niederholtmeyer H., Wolfstädter B. T., Savage D. F., Silver P. A., Way J. C. Engineering Cyanobacteria to Synthesize and Export Hydrophilic Products. Appl Environ Microbiol 2010:76(11):3462–3466. https://doi.org/10.1128/AEM.00202-10 Search in Google Scholar

Afreen R., Tyagi S., Singh G. P., Singh M. Challenges and Perspectives of Polyhydroxyalkanoate Production from Microalgae/Cyanobacteria and Bacteria as Microbial Factories: An Assessment of Hybrid Biological System. Front. Bioeng. Biotechnol. 2021:9:624885. https://doi.org/10.3389/fbioe.2021.624885 Search in Google Scholar

Lowe H., Hobmeier K., Moos M., Kremling A., Pfluger-Grau K. Photoautotrophic production of polyhydroxyalkanoates in a synthetic mixed culture of Synechococcus elongatus cscB and Pseudomonas putida cscAB. Biotechnol Biofuels 2017:10(1):190. https://doi.org/10.1186/s13068-017-0875-0 Search in Google Scholar

Rosano G. L., Morales E. S., Ceccarelli E. A. New tools for recombinant protein production in Escherichia coli : A 5‐year update. Protein Science 2019:28(8):1412–1422. https://doi.org/10.1002/pro.3668 Search in Google Scholar

Rahman A., Anthony R. J., Sathish A., Sims R. C., Miller C. D. Effects of wastewater microalgae harvesting methods on polyhydroxybutyrate production. Bioresource Technology 2014:156:364–367. https://doi.org/10.1016/j.biortech.2014.01.034 Search in Google Scholar

Borowitzka M. A. Chapter3 - Biology of Microalgae. In Microalgae in Health and Disease Prevention. Elsevier, 2018:23–72. https://doi.org/10.1016/B978-0-12-811405-6.00003-7 Search in Google Scholar

NASA. Strata at Base of Mount Sharp. 2015. [Online]. [Accessed: 05.11.2023]. Available: https://mars.nasa.gov/resources/7505/strata-at-base-of-mount-sharp/ Search in Google Scholar

NASA. Northern Ice Cap of Mars. 2010. [Online]. [Accessed: 05.11.2023]. Available: https://mars.nasa.gov/resources/3241/northern-ice-cap-of-mars/ Search in Google Scholar

NASA. Solar Fury. NASA’s Goddard Space Flight Center. 2017. [Online]. [Accessed: 05.11.2023]. Available: https://solarsystem.nasa.gov/resources/392/solar-fury/?category=solar-system_sun Search in Google Scholar

NASA. Viking 1 orbiter image shows the thin atmosphere of Mars. 1976. [Online]. [Accessed: 05.10.2023]. Available: http://solarsystem.nasa.gov/multimedia/gallery/Mars__atmosphere.jpg Search in Google Scholar

NASA. Space Food Laboratory Gallery. 2003. [Online]. [Accessed: 05.10.2023]. Available: https://www.nasa.gov/audience/formedia/presskits/spacefood/gallery_jsc2003e63872.html Search in Google Scholar

iStock and Grafner, ‘Red black 3D printer printing blue logo symbol on metal diamond plate future technology modern concept stock photo’, 2019. [Online]. [Accessed: 05.11.2023]. Available: https://www.istockphoto.com/photo/red-black-3d-printer-printing-blue-logo-symbol-on-metal-diamond-plate-future-gm1140075616-304946166 Search in Google Scholar

MorgueFile. Various pills. 2007. [Online]. [Accessed: 05.10.2023]. Available: http://www.morguefile.com Search in Google Scholar

NASA. Roaring Perseverance Launch. 2020. [Online]. [Accessed: 05.11.2023]. Available: https://mars.nasa.gov/resources/25214/roaring-perseverance-launch/ Search in Google Scholar

Lee E., Choi J., Ahn A., Oh E., Kweon H., Cho D. Acceptable macronutrient distribution ranges and hypertension. Clinical and Experimental Hypertension 2015:37(6):463–467. https://doi.org/10.3109/10641963.2015.1013116 Search in Google Scholar

Energetics of Cellular Respiration (Glucose Metabolism). Biochemistry Notes. PharmaXChange.info. Oct. 10, 2013. [Online]. [Accessed: 28.04.2023]. Available: https://pharmaxchange.info/2013/10/energetics-of-cellular-respiration-glucose-metabolism/ Search in Google Scholar

Rehkamp S. A Look at Calorie Sources in the American Diet. USDA Economic Research Service U.S. Department of Agriculture. Dec. 05, 2016. [Online]. [Accessed: 28.04.2023]. Available: https://www.ers.usda.gov/amber-waves/2016/december/a-look-at-calorie-sources-in-the-american-diet Search in Google Scholar

Eliasson A.-C., Ed. Starch in food: structure, function and applications. In Woodhead Publishing in food science and technology. Cambridge, England: Boca Raton, FL: Woodhead Pub.; CRC Press, 2004. Search in Google Scholar

Dismukes G. C., Carrieri D., Bennette N., Ananyev G. M., Posewitz M. C. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Current Opinion in Biotechnology 2008:19(3):235–240. https://doi.org/10.1016/j.copbio.2008.05.007 Search in Google Scholar

Wang B., Wang J., Zhang W., Meldrum D. Application of synthetic biology in cyanobacteria and algae. Frontiers in Microbiology 2012:3. https://doi.org/10.3389/fmicb.2012.00344 Search in Google Scholar

Hendrickx L., Mergeay M. From the deep sea to the stars: human life support through minimal communities. Current Opinion in Microbiology 2007:10(3):231–237. https://doi.org/10.1016/j.mib.2007.05.007 Search in Google Scholar

Janssen P. J. D., et al. Photosynthesis at the forefront of a sustainable life. Frontiers in Chemistry 2014:2. https://doi.org/10.3389/fchem.2014.00036 Search in Google Scholar

Lehto K. M., Lehto H. J., Kanervo E. A. Suitability of different photosynthetic organisms for an extraterrestrial biological life support system. Research in Microbiology 2006:157(1):69–76. https://doi.org/10.1016/j.resmic.2005.07.011 Search in Google Scholar

Way J. C., Silver P. A., Howard R. J. Sun-driven microbial synthesis of chemicals in space. International Journal of Astrobiology 2011:10(4):359–364. https://doi.org/10.1017/S1473550411000218 Search in Google Scholar

Kiss J. Z. Plant biology in reduced gravity on the Moon and Mars. Plant Biology 2014:16(1):12–17. https://doi.org/10.1111/plb.12031 Search in Google Scholar

Villacampa A., et al. From Spaceflight to Mars g-Levels: Adaptive Response of A. Thaliana Seedlings in a Reduced Gravity Environment Is Enhanced by Red-Light Photostimulation. International Journal of Molecular Sciences 2021:22(2):899. https://doi.org/10.3390/ijms22020899 Search in Google Scholar

Davila A. F., Willson D., Coates J. D., McKay C. P. Perchlorate on Mars: a chemical hazard and a resource for humans. International Journal of Astrobiology 2013:12(4):321–325. https://doi.org/10.1017/S1473550413000189 Search in Google Scholar

Oze C., et al. Perchlorate and Agriculture on Mars. Soil Systems 2021:5(3):0037. https://doi.org/10.3390/soilsystems5030037 Search in Google Scholar

Fackrell L. E., Schroeder P. A., Thompson A., Stockstill-Cahill K., Hibbitts C. A. Development of martian regolith and bedrock simulants: Potential and limitations of martian regolith as an in-situ resource. Icarus 2021:354:114055. https://doi.org/10.1016/j.icarus.2020.114055 Search in Google Scholar

Bito T., Okumura E., Fujishima M., Watanabe F. Potential of Chlorella as a Dietary Supplement to Promote Human Health. Nutrients 2020:12(9):2524. https://doi.org/10.3390/nu12092524 Search in Google Scholar

Gissibl A., Sun A., Care A., Nevalainen H., Sunna A. Bioproducts from Euglena gracilis: Synthesis and Applications. Front. Bioeng. Biotechnol. 2019:7:108. https://doi.org/10.3389/fbioe.2019.00108 Search in Google Scholar

St. Jeor S. T., et al. Dietary Protein and Weight Reduction. Circulation 2001:104(15):1869–1874. https://doi.org/10.1161/hc4001.096152 Search in Google Scholar

FDA Consumer, vol. 36. U.S. Department of Health, Education, and Welfare, Public Health Service, Food and Drug Administration, 2002. Search in Google Scholar

Starr C., Taggart R., Evers C., Starr L. Biology: The Unity and Diversity of Life. Cengage Learning, 2015. Search in Google Scholar

Bilsborough S., Mann N. A Review of Issues of Dietary Protein Intake in Humans. International Journal of Sport Nutrition and Exercise Metabolism 2006:16(2):129–152. https://doi.org/10.1123/ijsnem.16.2.129 Search in Google Scholar

Margolis S. The Johns Hopkins medical guide to health after 50. New York: Black Dog & Leventhal, 2011. Search in Google Scholar

Hoeger W. W. K., Hoeger S. A. Fitness and wellness, 7th ed. Australia; Belmont, CA: Thomson/Wadsworth, 2007. Search in Google Scholar

Shilpa J., Mohan V. Ketogenic diets: Boon or bane? Indian J Med Res 2018:148(3):251–253. Search in Google Scholar

Masood W., Annamaraju P., Uppaluri K. R. Ketogenic Diet. In StatPearls, Treasure Island (FL): StatPearls Publishing, 2023. [Online]. [Accessed: 28.04.2023]. Available: http://www.ncbi.nlm.nih.gov/books/NBK499830/ Search in Google Scholar

Longo R., et al. Ketogenic Diet: A New Light Shining on Old but Gold Biochemistry. Nutrients 2019:11(10):2497. https://doi.org/10.3390/nu11102497 Search in Google Scholar

Tvrzicka E., Kremmyda L.-S., Stankova B., Zak A. Fatty acids as biocompounds: their role in human metabolism, health and disease – a review. Part 1: classification, dietary sources and biological functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2011:155(2):117–130. https://doi.org/10.5507/bp.2011.038 Search in Google Scholar

Burlingame B., Nishida C., Uauy R., Weisell R. Fats and Fatty Acids in Human Nutrition: Introduction. Ann Nutr Metab 2009:55(1–3):5–7. https://doi.org/10.1159/000228993 Search in Google Scholar

Murray A. J., et al. Novel ketone diet enhances physical and cognitive performance. FASEB Journal 2016:30(12):4021–4032. https://doi.org/10.1096/fj.201600773R Search in Google Scholar

Prince A., Zhang Y., Croniger C., Puchowicz M. Oxidative Metabolism: Glucose Versus Ketones. In Van Huffel S., Naulaers G., Caicedo A., Bruley D. F., Harrison D. K., Eds. Oxygen Transport to Tissue XXX. Advances in Experimental Medicine and Biology 2013:789:323–328. Springer, New York. https://doi.org/10.1007/978-1-4614-7411-1_43 Search in Google Scholar

Karwi Q. G., Lopaschuk G. D. CrossTalk proposal: Ketone bodies are an important metabolic fuel for the heart. The Journal of Physiology 2022:600(5):1001–1004. https://doi.org/10.1113/JP281004 Search in Google Scholar

Klepper J., Diefenbach S., Kohlschütter A., Voit T. Effects of the ketogenic diet in the glucose transporter 1 deficiency syndrome. Prostaglandins, Leukotrienes and Essential Fatty Acids 2004:70(3):321–327. https://doi.org/10.1016/j.plefa.2003.07.004 Search in Google Scholar

Klepper J., et al. Introduction of a ketogenic diet in young infants. J Inherit Metab Dis 2002:25(6):449–460. https://doi.org/10.1023/A:1021238900470 Search in Google Scholar

Chida R., Shimura M., Nishimata S., Kashiwagi Y., Kawashima H. Efficacy of ketogenic diet for pyruvate dehydrogenase complex deficiency. Pediatrics International 2018:60(11):1041–1042. https://doi.org/10.1111/ped.13700 Search in Google Scholar

Wexler I. D., et al. Outcome of pyruvate dehydrogenase deficiency treated with ketogenic diets: Studies in patients with identical mutations. Neurology 1997:49(6):1655–1661. https://doi.org/10.1212/WNL.49.6.1655 Search in Google Scholar

Martin-McGill K. J., Bresnahan R., Levy R. G., Cooper P. N. Ketogenic diets for drug‐resistant epilepsy. Cochrane Database of Systematic Reviews 2020:6. https://doi.org/10.1002/14651858.CD001903.pub5 Search in Google Scholar

Roehl K., Falco-Walter J., Ouyang B., Balabanov A. Modified ketogenic diets in adults with refractory epilepsy: Efficacious improvements in seizure frequency, seizure severity, and quality of life. Epilepsy & Behavior 2019:93:113–118. https://doi.org/10.1016/j.yebeh.2018.12.010 Search in Google Scholar

Campbell-McBride N. Gut and Psychology Syndrome: Natural Treatment for Autism, Dyspraxia, A.D.D., Dyslexia, A.D.H.D., Depression, Schizophrenia. Amersham: Halstan & Co. Ltd, 2010. Search in Google Scholar

Campbell-McBride N. Gut and Physiology Syndrome: Natural Treatment for Allergies, Autoimmune Illness, Arthritis, Gut Problems, Fatigue, Hormonal Problems, Neurological Disease and More. Chelsea Green Publishing, 2020. Search in Google Scholar

Sleiman S. F., et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. eLife 2016:5:e15092. https://doi.org/10.7554/eLife.15092 Search in Google Scholar

Jensen N. J., Wodschow H. Z., Nilsson M., Rungby J. Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases. International Journal of Molecular Sciences 2020:21(22). https://doi.org/10.3390/ijms21228767 Search in Google Scholar

Calder P. C. Functional Roles of Fatty Acids and Their Effects on Human Health. JPEN J Parenter Enteral Nutr 2015:39(1):18S–32S. https://doi.org/10.1177/0148607115595980 Search in Google Scholar

De Cabo R., Mattson M. P. Effects of Intermittent Fasting on Health, Aging, and Disease. N Engl J Med 2019:381(26):2541–2551. https://doi.org/10.1056/NEJMra1905136 Search in Google Scholar

Puchowicz M. A., et al. Neuroprotection in Diet-Induced Ketotic Rat Brain after Focal Ischemia. J Cereb Blood Flow Metab 2008:28(12):1907–1916. https://doi.org/10.1038/jcbfm.2008.79 Search in Google Scholar

Willi S. M., Oexmann M. J., Wright N. M., Collop N. A., Key L. L. Jr. The Effects of a High-protein, Low-fat, Ketogenic Diet on Adolescents with Morbid Obesity: Body Composition, Blood Chemistries, and Sleep Abnormalities. Pediatrics 1998:101(1):61–67. https://doi.org/10.1542/peds.101.1.61 Search in Google Scholar

Freeman J., Viggiotti P., Lanzi G., Tagliabue A., Perucca E. The Ketogenic diet: from molecular mechanisms to clinical effects. Epilepsy Research 2006:68(2):145–180. https://doi.org/10.1016/j.eplepsyres.2005.10.003 Search in Google Scholar

Edwards L. M., et al. Short‐term consumption of a high‐fat diet impairs whole‐body efficiency and cognitive function in sedentary men. FASEB Journal 2011:25(3):1088–1096. https://doi.org/10.1096/fj.10-171983 Search in Google Scholar

Holloway C. J., et al. A high-fat diet impairs cardiac high-energy phosphate metabolism and cognitive function in healthy human subjects. The American Journal of Clinical Nutrition 2011:93(4):748–755. https://doi.org/10.3945/ajcn.110.002758 Search in Google Scholar

Helge J. W., Richter E. A., Kiens B. Interaction of training and diet on metabolism and endurance during exercise in man. The Journal of Physiology 1996:492(1):293–306. https://doi.org/10.1113/jphysiol.1996.sp021309 Search in Google Scholar

Smith S. M., Zwart S. R., Heer M. Human Adaptation to Spaceflight: The Role of Nutrition. NASA, 2009. [Online]. [Accessed: 05.10.2023]. Available: https://www.nasa.gov/sites/default/files/human-adaptation-to-spaceflight-the-role-of-nutrition.pdf Search in Google Scholar

Phillips W. J. Starvation and Survival: Some Military Considerations. Military Medicine 1994:159(7):513–516. https://doi.org/10.1093/milmed/159.7.513 Search in Google Scholar

Kaspar M. B., Austin K., Huecker M., Sarav M. Ketogenic Diet: from the Historical Records to Use in Elite Athletes. Curr Nutr Rep 2019:8(4):340–346. https://doi.org/10.1007/s13668-019-00294-0 Search in Google Scholar

Phinney S. D. Ketogenic diets and physical performance. Nutr Metab 2004:1(1):2. https://doi.org/10.1186/1743-7075-1-2 Search in Google Scholar

Musilova M., Foing B., Beniest A., Rogers H. EuroMoonMars IMA at hi-seas campaigns in 2019: an overview of the analog missions, upgrades to the mission operations and protocols. 2020 [Online]. [Accessed: 05.10.2023]. Available: https://www.hou.usra.edu/meetings/lpsc2020/pdf/2893.pdf Search in Google Scholar

University of South Florida. NASA mission tests ketogenic diet undersea, simulating life on Mars. 2017. [Online]. [Accessed: 05.10.2023]. Available: https://phys.org/news/2017-06-nasa-mission-ketogenic-diet-undersea.html Search in Google Scholar

Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environmental and Climate Technologies 2018:22(1):149–164. https://doi.org/10.2478/rtuect-2018-0010 Search in Google Scholar

de O. Finco A. M., Mamani L. D. G., de Carvalho J. C., de Melo Pereira G. V., Thomaz-Soccol V., Soccol C. R. Technological trends and market perspectives for production of microbial oils rich in omega-3. Critical Reviews in Biotechnology 2017:37(5):656–671. https://doi.org/10.1080/07388551.2016.1213221 Search in Google Scholar

Innis S. M. Dietary omega 3 fatty acids and the developing brain. Brain Research 2008:1237:35–43. https://doi.org/10.1016/j.brainres.2008.08.078 Search in Google Scholar

Sinclair A. J., Jayasooriya A. 16 – Nutritional Aspects of Single Cell Oils: Applications of Arachidonic Acid and Docosahexaenoic Acid Oils. In Single Cell Oils (Second Edition), Z. Cohen and C. Ratledge, Eds., AOCS Press, 2010:351–368. https://doi.org/10.1016/B978-1-893997-73-8.50020-7 Search in Google Scholar

Collins C. T., et al. Pre- and post-term growth in pre-term infants supplemented with higher-dose DHA: a randomised controlled trial. British Journal of Nutrition 2011:105(11):1635–1643. https://doi.org/10.1017/S000711451000509X Search in Google Scholar

Petrie J. R., et al. Metabolic Engineering Camelina sativa with Fish Oil-Like Levels of DHA. PLOS ONE 2014:9(1):e85061. https://doi.org/10.1371/journal.pone.0085061 Search in Google Scholar

Ratledge C. Microbial oils: an introductory overview of current status and future prospects. OCL 2013:20(6). https://doi.org/10.1051/ocl/2013029 Search in Google Scholar

Garay L. A., Boundy-Mills K. L., German J. B. Accumulation of High-Value Lipids in Single-Cell Microorganisms: A Mechanistic Approach and Future Perspectives. J. Agric. Food Chem. 2014:62(13):2709–2727. https://doi.org/10.1021/jf4042134 Search in Google Scholar

Huang C., Chen X., Xiong L., Chen X., Ma L., Chen Y. Single cell oil production from low-cost substrates: The possibility and potential of its industrialization. Biotechnology Advances 2013:31(2):129–139. https://doi.org/10.1016/j.biotechadv.2012.08.010 Search in Google Scholar

Thevenieau F., Nicaud J.-M. Microorganisms as sources of oils. OCL 2013:20(6):D603. https://doi.org/10.1051/ocl/2013034 Search in Google Scholar

Christophe G., et al. Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food? Braz. arch. biol. technol. 2012:55(1):29–46. https://doi.org/10.1590/S1516-89132012000100004 Search in Google Scholar

Liu J., Sun Z., Chen F. Heterotrophic Production of Algal Oils. In Biofuels from Algae, Elsevier, 2014:111–142. https://doi.org/10.1016/B978-0-444-59558-4.00006-1 Search in Google Scholar

Račko E., Blumberga D., Spalviņš K., Marčiulaitienė E. Ranking of By-products for Single Cell Oil Production. Case of Latvia. Environmental and Climate Technologies 2020:24(2):258–271. https://doi.org/10.2478/rtuect-2020-0071 Search in Google Scholar

Chang G., Gao N., Tian G., Wu Q., Chang M., Wang X. Improvement of docosahexaenoic acid production on glycerol by Schizochytrium sp. S31 with constantly high oxygen transfer coefficient. Bioresource Technology 2013:142:400–406. https://doi.org/10.1016/j.biortech.2013.04.107 Search in Google Scholar

Ma W., et al. Efficient co-production of EPA and DHA by Schizochytrium sp. via regulation of the polyketide synthase pathway. Commun Biol 2022:5(1356). https://doi.org/10.1038/s42003-022-04334-4 Search in Google Scholar

Kim H.-Y., Huang B. X., Spector A. A. Phosphatidylserine in the brain: Metabolism and function. Progress in Lipid Research 2014:56:1–18. https://doi.org/10.1016/j.plipres.2014.06.002 Search in Google Scholar

Singh M. Essential fatty acids, DHA and human brain. Indian J Pediatr 2005:72(3):239–242. https://doi.org/10.1007/BF02859265 Search in Google Scholar

Derbyshire E. Brain Health across the Lifespan: A Systematic Review on the Role of Omega-3 Fatty Acid Supplements. Nutrients 2018:10(8):1094. https://doi.org/10.3390/nu10081094 Search in Google Scholar

Reimers A., Ljung H. The emerging role of omega-3 fatty acids as a therapeutic option in neuropsychiatric disorders. Therapeutic Advances in Psychopharmacology 2019:9. https://doi.org/10.1177/2045125319858901 Search in Google Scholar

Gutiérrez S., Svahn S. L., Johansson M. E. Effects of Omega-3 Fatty Acids on Immune Cells. International Journal of Molecular Sciences 2019:20(20):5028. https://doi.org/10.3390/ijms20205028 Search in Google Scholar

Pizzini A., Lunger L., Sonnweber T., Weiss G., Tancevski I. The Role of Omega-3 Fatty Acids in the Setting of Coronary Artery Disease and COPD: A Review. Nutrients 2018:10(12):1864. https://doi.org/10.3390/nu10121864. Search in Google Scholar

Watanabe Y., Tatsuno I. Omega-3 polyunsaturated fatty acids for cardiovascular diseases: present, past and future. Expert Review of Clinical Pharmacology 2017:10(8):865–873. https://doi.org/10.1080/17512433.2017.1333902 Search in Google Scholar

Roohani A. M., et al. Effect of spirulina Spirulina platensis as a complementary ingredient to reduce dietary fish meal on the growth performance, whole-body composition, fatty acid and amino acid profiles, and pigmentation of Caspian brown trout (Salmo trutta caspius) juveniles. Aquaculture Nutrition 2019:25(3):633–645. https://doi.org/10.1111/anu.12885 Search in Google Scholar

Bertoldi F. C., Sant’Anna E., da C. Braga M. V., Oliveira J. L. B. Lipids, fatty acids composition and carotenoids of Chlorella vulgaris cultivated in hydroponic wastewater. Grasas y Aceites 2006:57(3). https://doi.org/10.3989/gya.2006.v57.i3.48 Search in Google Scholar

Tokuşoglu Ö., üUnal M. K. Biomass Nutrient Profiles of Three Microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. Journal of Food Science 2003:68(4):1144–1148. https://doi.org/10.1111/j.1365-2621.2003.tb09615.x Search in Google Scholar

Diraman H., Koru E., Dibeklioglu H. Fatty Acid Profile of Spirulina platensis Used as a Food Supplement. Israeli Journal of Aquaculture – Bamidgeh 2009:61. https://doi.org/10.46989/001c.20548 Search in Google Scholar

Bailey R. B., et al. Enhanced production of lipids containing polyenoic fatty acid by very high density cultures of eukaryotic microbes in fermentors. [Online]. [Accessed: 28.04.2023]. Available: https://patents.google.com/patent/US6607900B2/en Search in Google Scholar

Liang Y., Sarkany N., Cui Y., Yesuf J., Trushenski J., Blackburn J. W. Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresource Technology 2010:101(10):3623–3627. https://doi.org/10.1016/j.biortech.2009.12.087 Search in Google Scholar

Soni R. A., Sudhakar K., Rana R. S. Spirulina – From growth to nutritional product: A review. Trends in Food Science & Technology 2017:69:157–171. https://doi.org/10.1016/j.tifs.2017.09.010 Search in Google Scholar

Spalvins K., Blumberga D. Single cell oil production from waste biomass: review of applicable agricultural by-products. Environmental and Climate Technologies 2019:23(2):325–337. https://doi.org/10.2478/rtuect-2019-0071 Search in Google Scholar

Spalvins K., Vamza I., Blumberga D. Single Cell Oil Production from Waste Biomass: Review of Applicable Industrial By-Products. Environmental and Climate Technologies 2019:23(2):325–337. https://doi.org/10.2478/rtuect-2019-0071 Search in Google Scholar

Li J., et al. A strategy for the highly efficient production of docosahexaenoic acid by Aurantiochytrium limacinum SR21 using glucose and glycerol as the mixed carbon sources. Bioresour Technol 2015:177:51–57. https://doi.org/10.1016/j.biortech.2014.11.046 Search in Google Scholar

Patil K. P., Gogate P. R. Improved synthesis of docosahexaenoic acid (DHA) using Schizochytrium limacinum SR21 and sustainable media. Chemical Engineering Journal 2015:268:187–196. https://doi.org/10.1016/j.cej.2015.01.050 Search in Google Scholar

Food and Agriculture Organization of the United Nations. Projet Pilote de d´eveloppement de la fili‘ere Dih´e au Tchad. 2007. Search in Google Scholar

Sun L., Ren L., Zhuang X., Ji X., Yan J., Huang H. Differential effects of nutrient limitations on biochemical constituents and docosahexaenoic acid production of Schizochytrium sp. Bioresource Technology 2014:159:199–206. https://doi.org/10.1016/j.biortech.2014.02.106 Search in Google Scholar

Bonilla J. R., Concha J. L. H. Methods of extraction, refining and concentration of fish oil as a source of Omega-3 fatty acids. Agricultural Science and Technology 2018:19(3):621–644. https://doi.org/10.21930/rcta.vol19_num2_art:684 Search in Google Scholar

Hart B., Schurr R., Narendranath N., Kuehnle A., Colombo S. M. Digestibility of Schizochytrium sp. whole cell biomass by Atlantic salmon (Salmo salar). Aquaculture 2021:533:736156. https://doi.org/10.1016/j.aquaculture.2020.736156 Search in Google Scholar

Greenwalt C. J. Utilization of crop residue and production of edible single cell oil for an advanced life support system – ProQuest. 2000. [Online]. [Accessed: 28.04.2023]. Available: https://www.proquest.com/openview/b353c1d289a46d32ff761317db9b9bc6/1?cbl=18750&diss=y&pq-origsite=gscholar&parentSessionId=tU1Nw%2FUgeOuGU3Z%2BbNAdwDkNYwMUrQCoAf0RdIfeMEY%3D Search in Google Scholar

Zhang J., et al. Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Biomass and Bioenergy 2011:35(5):1906–1911. https://doi.org/10.1016/j.biombioe.2011.01.024 Search in Google Scholar

Hao S., et al. The effects of different extraction methods on composition and storage stability of sturgeon oil. Food Chemistry 2015:173:274–282. https://doi.org/10.1016/j.foodchem.2014.09.154 Search in Google Scholar

Haq M., Ahmed R., Cho Y.-J., Chun B.-S. Quality Properties and Bio-potentiality of Edible Oils from Atlantic Salmon By-products Extracted by Supercritial Carbon Dioxide and Conventional Methods. Waste Biomass Valor 2017:8(6):1953–1967. https://doi.org/10.1007/s12649-016-9710-2 Search in Google Scholar

Lopes B. L. F., Sánchez-Camargo A. P., Ferreira A. L. K., Grimaldi R., Paviani L. C., Cabral F. A. Selectivity of supercritical carbon dioxide in the fractionation of fish oil with a lower content of EPA+DHA. The Journal of Supercritical Fluids 2012:61:78–85. https://doi.org/10.1016/j.supflu.2011.09.015 Search in Google Scholar

Ferdosh S., Sarker Md. Z. I., Norulaini Nik Ab Rahman N., Haque Akanda Md. J., Ghafoor K., Kadir Mohd. O. A. Simultaneous Extraction and Fractionation of Fish Oil from Tuna By-Product Using Supercritical Carbon Dioxide (SC-CO2). Journal of Aquatic Food Product Technology 2016:25(2):230–239. https://doi.org/10.1080/10498850.2013.843629 Search in Google Scholar

Perretti G., Motori A., Bravi E., Favati F., Montanari L., Fantozzi P. Supercritical carbon dioxide fractionation of fish oil fatty acid ethyl esters. The Journal of Supercritical Fluids 2007:40(3):349–353. https://doi.org/10.1016/j.supflu.2006.07.020 Search in Google Scholar

Létisse M., Comeau L. Enrichment of eicosapentaenoic acid and docosahexaenoic acid from sardine by-products by supercritical fluid fractionation. Journal of Separation Science 2008:31(8):1374–1380. https://doi.org/10.1002/jssc.200700501 Search in Google Scholar

Carneiro M. L. N. M., et al. Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA). Renewable and Sustainable Energy Reviews 2017:73:632–653. https://doi.org/10.1016/j.rser.2017.01.152 Search in Google Scholar

Lam M. K., Lee K. T. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances 2012:30(3):673–690. https://doi.org/10.1016/j.biotechadv.2011.11.008 Search in Google Scholar

McKinlay J. B., Harwood C. S. Photobiological production of hydrogen gas as a biofuel. Current Opinion in Biotechnology 2010:21(3):244–251. https://doi.org/10.1016/j.copbio.2010.02.012 Search in Google Scholar

Bauen A., Howes J., Bertuccioli L., Chudziak C. Review of the potential for biofuels in aviation. E4tech, Final report, Aug. 2009. [Online]. [Accessed: 28:04:2023]. Available: https://citeseerx.ist.psu.edu/doc/10.1.1.170.8750 Search in Google Scholar

Holmgren J. Creating Alternative Fuel Options for the Aviation Industry: Role of Biofuels. Presented at the Holmgren 2009. Jennifer Holmgren, Creating Alternative Fuel for the Aviation Industry, UOP, ICAO Workshop on Aviation and Alternative Fuels, Montreal, Canada, Nov. 02, 2009. Search in Google Scholar

Fukuda H., Kondo A., Noda H. Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering 2001:92(5):405–416. https://doi.org/10.1016/S1389-1723(01)80288-7 Search in Google Scholar

Brown R., Holmgren J. Fast Pyrolysis and Bio-Oil Upgrading. [Online]. [Accessed: 28.04.2023]. Available: https://www.driveonwood.com/static/media/uploads/pdf/fast_pyrolysis.pdf Search in Google Scholar

Alternative Fuels Data Center: Renewable Gasoline. US Department of Energy. Energy Effciency & Renewable Energy. [Online]. [Accessed: 28.04.2023]. Available: https://afdc.energy.gov/fuels/emerging_hydrocarbon.html Search in Google Scholar

Alternative Fuels Data Center: Biodiesel Production and Distribution. US Department of Energy. Energy Efficiency & Renewable Energy. [Online]. [Accessed: 28.04.2023]. Available: https://afdc.energy.gov/fuels/biodiesel_production.html Search in Google Scholar

Evans D. G. National Non-Food Crops Centre – NNFCC 08-017 International Biofuels Strategy Project. Liquid Transport Biofuels – Technology Status Report. Jun. 11, 2008. [Online]. [Accessed: 28.04.2023]. Available: https://web.archive.org/web/20080611062858/http:/www.nnfcc.co.uk/metadot/index.pl?id=6597%3Bisa%3DDBRow%3Bop%3Dshow%3Bdbview_id%3D2457 Search in Google Scholar

Liu J., Sun L., Xu W., Wang Q., Yu S., Sun J. Current advances and future perspectives of 3D printing natural-derived biopolymers. Carbohydrate Polymers 2019:207:297–316. https://doi.org/10.1016/j.carbpol.2018.11.077 Search in Google Scholar

Chia W. Y., Ying Tang D. Y., Khoo K. S., Kay Lup A. N., Chew K. W. Nature’s fight against plastic pollution: Algae for plastic biodegradation and bioplastics production. Environmental Science and Ecotechnology 2020:4:100065. https://doi.org/10.1016/j.ese.2020.100065 Search in Google Scholar

Keshavarz T., Roy I. Polyhydroxyalkanoates: bioplastics with a green agenda. Current Opinion in Microbiology 2010:3:321–326. https://doi.org/10.1016/j.mib.2010.02.006 Search in Google Scholar

Chinthapalli R., et al. Biobased Building Blocks and Polymers – Global Capacities, Production and Trends, 2018–2023. Industrial Biotechnology 2019:15(4):237–241. https://doi.org/10.1089/ind.2019.29179.rch Search in Google Scholar

Meier M. A. R., Metzger J. O., Schubert U. S. Plant oil renewable resources as green alternatives in polymer science. Chem. Soc. Rev. 2007:36(11):1788–1802. https://doi.org/10.1039/b703294c Search in Google Scholar

Feofilovs M., Spalvins K., Valters K. Bibliometric Review of State-of-the-art Research on Microbial Oils’ Use for Biobased Epoxy. Environmental and Climate Technologies 2023:27(1):150–163. https://doi.org/10.2478/rtuect-2023-0012 Search in Google Scholar

Stemmelen M., Pessel F., Lapinte V., Caillol S., Habas J.-P., Robin J.-J. A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material. Journal of Polymer Science Part A: Polymer Chemistry 2011:49(11):2434–2444. https://doi.org/10.1002/pola.24674 Search in Google Scholar

Dogan E., Kusefoglu S. Synthesis and in situ foaming of biodegradable malonic acid ESO polymers. Journal of Applied Polymer Science 2008:110(2):1129–1135. ttps://doi.org/10.1002/app.28708 Search in Google Scholar

La Scala J., Wool R. P. Fundamental thermo-mechanical property modeling of triglyceride-based thermosetting resins. Journal of Applied Polymer Science 2013:127(3):1812–1826. https://doi.org/10.1002/app.37927 Search in Google Scholar

Negrell C., Cornille A., de Andrade Nascimento P., Robin J.-J., Caillol S. New bio-based epoxy materials and foams from microalgal oil. European Journal of Lipid Science and Technology 2017:119(4):1600214. https://doi.org/10.1002/ejlt.201600214 Search in Google Scholar

Taoka Y., Nagano N., Okita Y., Izumida H., Sugimoto S., Hayashi M. Influences of Culture Temperature on the Growth, Lipid Content and Fatty Acid Composition of Aurantiochytrium sp. Strain mh0186. Mar Biotechnol 2009:11(3):368–374. https://doi.org/10.1007/s10126-008-9151-4 Search in Google Scholar

Roesle P., et al. Synthetic Polyester from Algae Oil. Angewandte Chemie International Edition 2009:53(26):6800–6804. https://doi.org/10.1002/anie.201403991 Search in Google Scholar

Petrovic Z. S., et al. Polyols and Polyurethanes from Crude Algal Oil. Journal of the American Oil Chemists’ Society 2013:90(7):1073–1078. https://doi.org/10.1007/s11746-013-2245-9 Search in Google Scholar

Pawar M. S., Kadam A. S., Dawane B. S., Yemul O. S. Synthesis and characterization of rigid polyurethane foams from algae oil using biobased chain extenders. Polym. Bull. 2016:73(3):727–741. https://doi.org/10.1007/s00289-015-1514-1 Search in Google Scholar

Arbenz A., Perrin R., Averous L. Elaboration and Properties of Innovative Biobased PUIR Foams from Microalgae. J Polym Environ 2018:26(1):254–262. https://doi.org/10.1007/s10924-017-0948-y Search in Google Scholar

Hidalgo P., Navia R., Hunter R., Gonzalez M. E., Echeverría A. Development of novel bio-based epoxides from microalgae Nannochloropsis gaditana lipids. Composites Part B: Engineering 2019:166:653–662. https://doi.org/10.1016/j.compositesb.2019.02.049 Search in Google Scholar

Bhatia A., Sehgal A. K. Additive manufacturing materials, methods and applications: A review. Materialstoday: Proceedings, International Virtual Conference on Sustainable Materials (IVCSM-2k20) 2023:81(2):1060–1067. https://doi.org/10.1016/j.matpr.2021.04.379 Search in Google Scholar

Malburet S., Di Mauro C., Noè C., Mija A., Sangermano M., Graillot A. Sustainable access to fully biobased epoxidized vegetable oil thermoset materials prepared by thermal or UV-cationic processes. RSC Adv. 2020:10(68):41954–41966. https://doi.org/10.1039/D0RA07682A Search in Google Scholar

Chen Q., Mangadlao J. D., Wallat J., De Leon A., Pokorski J. K., Advincula R. C. 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties. ACS Appl. Mater. Interfaces 2017:9(4):4015–4023. https://doi.org/10.1021/acsami.6b11793 Search in Google Scholar

Nurchi C., Buonvino S., Arciero I., Melino S. Sustainable Vegetable Oil-Based Biomaterials: Synthesis and Biomedical Applications. Int. J. Mol. Sci. 2023:24(3):2153. https://doi.org/10.3390/ijms24032153 Search in Google Scholar

Voet V. S. D., Guit J., Loos K. Sustainable Photopolymers in 3D Printing: A Review on Biobased, Biodegradable, and Recyclable Alternatives. Macromol. Rapid Commun. 2021:42(3):2000475. https://doi.org/10.1002/marc.202000475 Search in Google Scholar

Cui Y., Yang J., Lei D., Su J. 3D Printing of a Dual-Curing Resin with Cationic Curable Vegetable Oil. Ind. Eng. Chem. Res. 2020:59(25):11381–11388. https://doi.org/10.1021/acs.iecr.0c01507 Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other