European Commission. The new common agricultural policy: 2023–27, Agric. Rural Dev. 1–7. 2022. [Online]. [Accessed: 11.12.2022]. Available: https://agriculture.ec.europa.eu/common-agricultural-policy/cap-overview/newcap-2023-27_enSearch in Google Scholar
European Commission. Reinforcing Europe’s resilience: halting biodiversity loss and building a healthy and sustainable food system. 2020. [Online]. [Accessed: 11.12.2022]. Available: https://ec.europa.eu/commission/presscorner/detail/lv/ip_20_884Search in Google Scholar
European Commission. CAP Strategic Plans and Commission observations Summary overview for 19 Member States. 2022.Search in Google Scholar
European Commission. Farm to Fork Strategy. DG SANTE/Unit ‘Food Inf. Compos. food waste’. DG SANTE/Unit ‘Food Inf. Compos. food waste’. 2020. [Online]. [Accessed: 11.12.2022]. Available: https://ec.europa.eu/food/sites/food/files/safety/docs/f2f_action-plan_2020_strategy-info_en.pdfSearch in Google Scholar
Bumbiere K., Diaz Sanchez F. A., Pubule J., Blumberga D. Development and Assessment of Carbon Farming Solutions. Environmental and Climate Technologies 2022:26(1):898–916. https://doi.org/10.2478/rtuect-2022-0068Search in Google Scholar
Locmelis K., Blumberga A., Bariss U., Blumberga D., Balode L. Industrial energy efficiency towards green deal transition. Case of Latvia. Environmental and Climate Technologies 2021:25(1):42–57. https://doi.org/10.2478/rtuect-2021-0004Search in Google Scholar
The Food and Agriculture Organization of the United Nations. FAOSTAT statistical database, 2020.Search in Google Scholar
Klein A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B Biol. Sci. 2007:274(1608):303–313. https://doi.org/10.1098/rspb.2006.3721Search in Google Scholar
Sammataro D., Avitabile A. Pollination and Bee Plants. The beekeeper’s handbook. Cornell University Press, 1998.Search in Google Scholar
Nieto A. et al. European Red List of Bees. Luxembourg: Publication Ofce of the European Union, 2014.Search in Google Scholar
European Commission. Green Deal targets for 2030 and agricultural production studies. February, 2021.Search in Google Scholar
Cobey S. W. Comparison studies of instrumentally inseminated and naturally mated honey bee queens and factors affecting their performance. Apidologie 2007:38(4):390–410. https://doi.org/10.1051/apido:2007029Search in Google Scholar
Büchler R. et al. Standard methods for rearing and selection of Apis mellifera queens. Journal of Apicultural Research 2013:52(1):1–30. https://doi.org/10.3896/IBRA.1.52.1.07Search in Google Scholar
Oxley P. R., Oldroyd B. P. Chapter 3 - The Genetic Architecture of Honeybee Breeding. Advances in Insect Physiology 2010:39:83–118. https://doi.org/10.1016/B978-0-12-381387-9.00003-8Search in Google Scholar
Cobey S. W., Tarpy D. R., Woyke J. Standard methods for instrumental insemination of Apis mellifera queens. J. Apic. Res. 2013:52(4):1–18. https://doi.org/10.3896/IBRA.1.52.4.09Search in Google Scholar
Woyke J., Jasinski Z. Influence of Age of Drones on the Results of Instrumental Insemination of Honeybee Queens. Apidologie 1978:9(3):203–212. https://doi.org/10.1051/apido:19780304Search in Google Scholar
Taylor M. A., Guzmán-Novoa E., Morfin N., Buhr M. M. Improving viability of cryopreserved honey bee (Apis mellifera L.) sperm with selected diluents, cryoprotectants, and semen dilution ratios. Theriogenology 2009:72(2):149–159. https://doi.org/10.1016/j.theriogenology.2009.02.012Search in Google Scholar
Viert V., Wegener J., Bienefeld K. Europe’s First Gene Bank for Honey Bees. Bee World 2021:98(4):110–114. https://doi.org/10.1080/0005772x.2021.1927576Search in Google Scholar
Yániz J. L., Silvestre M. A., Santolaria P. Sperm quality assessment in honey bee drones. Biology (Basel) 2020:9(7):174. https://doi.org/10.3390/biology9070174Search in Google Scholar
Paillard M., Rousseau A., Giovenazzo P., Bailey J. L. Preservation of Domesticated Honey Bee (Hymenoptera: Apidae) Drone Semen. J. Econ. Entomol. 2017:110(4):1412–1418. https://doi.org/10.1093/jee/tox149Search in Google Scholar
Wegener J., May T., Kamp G., Bienefeld K. A successful new approach to honeybee semen cryopreservation. Cryobiology 2014:69(2):236–242. https://doi.org/10.1016/j.cryobiol.2014.07.011Search in Google Scholar
Gül A., Şahinler N., Onal A. G., Hopkins B. K., Sheppard W. S. Effects of diluents and plasma on honey bee (Apis mellifera L.) drone frozen-thawed semen fertility. Theriogenology 2017:101:109–113. https://doi.org/10.1016/j.theriogenology.2017.06.020Search in Google Scholar
Auth C. A., Hopkins B. K. Nitrogen vapor immersion: An accessible alternative for honey bee (Apis mellifera L.) semen cryopreservation. Cryobiology 2021:100:12–18. https://doi.org/10.1016/j.cryobiol.2021.04.006Search in Google Scholar
Alcay S. et al. Successful cryopreservation of honey bee drone spermatozoa with royal jelly supplemented extenders. Cryobiology 2019:87:28–31. https://doi.org/10.1016/j.cryobiol.2019.03.005Search in Google Scholar
Alcay S. et al. L-carnitine supplemented extenders improve post-thawing quality of honey bee drone (Apis mellifera) spermatozoa. Kafkas Univ. Vet. Fak. Derg. 2021:27(4):489–493. https://doi.org/10.9775/kvfd.2021.25756Search in Google Scholar
Alcay S. et al. Honey bee drone (Apis mellifera) sperm cryopreservation with rainbow trout seminal plasma supplemented extenders. J. Hell. Vet. Med. Soc. 2022:4(4):527–534.Search in Google Scholar
Collins A. M. Relationship between semen quality and performance of instrumentally inseminated honey bee queens. Apidologie 2000:31(3):421–429. https://doi.org/10.1051/apido:2000132Search in Google Scholar
Collins A. M. Functional longevity of honey bee, Apis mellifera, queens inseminated with low viability semen. J. Apic. Res. 2004:43(4):167–171.Search in Google Scholar
Hopkins B. K., Herr C. Factors affecting the successful cryopreservation of honey bee (Apis mellifera) spermatozoa. Apidologie 2010:41(5):548–556. https://doi.org/10.1051/apido/20010006Search in Google Scholar
Wegener J., Bienefeld K. Toxicity of cryoprotectants to honey bee semen and queens. Theriogenology 2012:77(3):600–607. https://doi.org/10.1016/j.theriogenology.2011.08.036Search in Google Scholar
Collins A. M. Survival of honey bee (Hymenoptera: Apidae) spermatozoa stored at above-freezing temperatures. J. Econ. Entomol. 2000:93(3):568–571. https://doi.org/10.1603/0022-0493-93.3.568Search in Google Scholar
Hopkins B. K., Cobey S. W., Herr C., Sheppard W. S. Gel-coated tubes extend above-freezing storage of honey bee (Apis mellifera) semen to 439 days with production of fertilised offspring. Reprod. Fertil. Dev. 2017:29(10):1944–1949. https://doi.org/10.1071/RD16087Search in Google Scholar
Dadkhah F., Nehzati-Paghaleh G., Zhandi M., Emamverdi M., Hopkins B. K. Preservation of honey bee spermatozoa using egg yolk and soybean lecithin-based semen extenders and a modified cryopreservation protocol. J. Apic. Res. 2016:55(4):279–283. https://doi.org/10.1080/00218839.2016.1243292Search in Google Scholar
Hopkins B. K., Herr C., Sheppard W. S. Sequential generations of honey bee (Apis mellifera) queens produced using cryopreserved semen. Reprod. Fertil. Dev. 2012:24(8):1079–1083. https://doi.org/10.1071/RD11088Search in Google Scholar
Wegener J., May T., Knollmann U., Kamp G., Müller K., Bienefeld K. In vivo validation of in vitro quality tests for cryopreserved honey bee semen. Cryobiology 2012:65(2):126–131. https://doi.org/10.1016/j.cryobiol.2012.04.010Search in Google Scholar
Harbo J. R., Williams J. L. Effect of above-freezing temperatures on temporary storage of honeybee spermatozoa. J. Apic. Res. 1987:26(1):53–55. https://doi.org/10.1080/00218839.1987.11100735Search in Google Scholar
Harbo J. R. Survival of Honey Bee (Hymenoptera: Apidae) Spermatozoa after Two Years in Liquid Nitrogen (−196 °C). Ann. Entomol. Soc. Am. 1983:76(5):890–891. https://doi.org/10.1093/aesa/76.5.890Search in Google Scholar
Esteki M. H., Malandrino A., Alemrajabi A. A., Sheridan G. K., Charras G., Moeendarbary E. Poroelastic osmoregulation of living cell volume. iScience 2021:24(12):103482. https://doi.org/10.1016/j.isci.2021.103482Search in Google Scholar
Wegener J., May T., Kamp G., Bienefeld K. New methods and media for the centrifugation of honey bee (Hymenoptera: Apidae) drone semen. J. Econ. Entomol. 2014:107(1):47–53. https://doi.org/10.1603/EC13159Search in Google Scholar