Cite

[1] Vea E. B., Romeo D., Thomsen M. Biowaste Valorisation in a Future Circular Bioeconomy. Procedia CIRP 2018:69:591–596. https://doi,org/10.1016/J.PROCIR.2017.11.06210.1016/j.procir.2017.11.062 Search in Google Scholar

[2] European Commission. Communication From The Commission To The European Parliament, The European Council, The Council, The European Economic And Social Committee And The Committee Of The Regions The European Green Deal. Brussels: EC, 2019. Search in Google Scholar

[3] Mikova N., Eichhammer W., Pfluger B. Low-carbon energy scenarios 2050 in north-west European countries: Towards a more harmonised approach to achieve the EU targets. Energy Policy 2019:130(C):448–460. https://doi.org/10.1016/J.ENPOL.2019.03.04710.1016/j.enpol.2019.03.047 Search in Google Scholar

[4] Silveira S., et al. Opportunities for bioenergy in the Baltic Sea Region. Energy Procedia 2017:128:157–164. https://doi.org/10.1016/J.EGYPRO.2017.09.03610.1016/j.egypro.2017.09.036 Search in Google Scholar

[5] Jonsson P. R., et al. Report on the importance of connectivity as a driver of biodiversity (populations, species, communities, habitats). BIO-C3 Deliv. D3.3. EU Bonusproject BIO -C3. Kiel: BIO-C3, 2016. https://doi.org/10.3289/BIO-C3_D3.3 Search in Google Scholar

[6] Bell J., et al. EU ambition to build the world’s leading bioeconomy—Uncertain times demand innovative and sustainable solutions. New Biotechnol. 2018:40:25–30. https://doi.org/10.1016/J.NBT.2017.06.01010.1016/j.nbt.2017.06.01028676417 Search in Google Scholar

[7] European Commission. Biomass production, supply, uses and flows in the European Union. Luxembourg: Publication office of the European Union, 2018. Search in Google Scholar

[8] Kamm B., Kamm M. Principles of biorefineries. Appl. Microbiol. Biotechnol. 2004:64(2):137–145. https://doi.org/10.1007/S00253-003-1537-710.1007/s00253-003-1537-714749903 Search in Google Scholar

[9] Sanz-Hernández A., Esteban E., Garrido P. Transition to a bioeconomy: Perspectives from social sciences. J. Clean. Prod. 2019:224:107–119. https://doi.org/10.1016/J.JCLEPRO.2019.03.16810.1016/j.jclepro.2019.03.168 Search in Google Scholar

[10] Fava F., et al. Biowaste biorefinery in Europe: opportunities and research & development needs. New Biotechnol. 2015:32(1):100–108. https://doi.org/10.1016/J.NBT.2013.11.00310.1016/j.nbt.2013.11.00324284045 Search in Google Scholar

[11] Zihare L., et al. Bioeconomy triple factor nexus through indicator analysis. New Biotechnol. 2021:61:57–68. https://doi.org/10.1016/J.NBT.2020.11.00810.1016/j.nbt.2020.11.00833220518 Search in Google Scholar

[12] Heimann T. Bioeconomy and SDGs: Does the Bioeconomy Support the Achievement of the SDGs? Earth’s Futur. 2019:7(1):43–57. https://doi.org/10.1029/2018EF00101410.1029/2018EF001014 Search in Google Scholar

[13] de Albuquerque T. L., et al. Biotechnological Strategies for the Lignin-Based Biorefinery Valorization. Ref. Modul. Chem. Mol. Sci. Chem. Eng. 2019. https://doi.org/10.1016/B978-0-12-409547-2.14570-610.1016/B978-0-12-409547-2.14570-6 Search in Google Scholar

[14] Sauvée L., Viaggi D. Biorefineries in the bio-based economy: opportunities and challenges for economic research. Bio-based Appl. Econ. 2016:5(1):1–4. https://doi.org/10.13128/BAE-18336 Search in Google Scholar

[15] Carioca J. O. B., Leal M. R. L. V. Ethanol Production from Sugar-Based Feedstocks. In Murray Moo-Young (eds) Comprehensive Biotechnology. 2nd Ed. Academic Press 2011:27–35. https://doi.org/10.1016/B978-0-08-088504-9.00184-710.1016/B978-0-08-088504-9.00184-7 Search in Google Scholar

[16] Yu S., et al. Nanocellulose from various biomass wastes: Its preparation and potential usages towards the high value-added products. Environ. Sci. Ecotechnology 2021:5:100077. https://doi.org/10.1016/J.ESE.2020.10007710.1016/j.ese.2020.100077 Search in Google Scholar

[17] Velvizhi G., et al. Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: Paving a path towards circular economy. Bioresour. Technol. 2022:343:126151. https://doi.org/10.1016/J.BIORTECH.2021.12615110.1016/j.biortech.2021.126151 Search in Google Scholar

[18] Lu H., et al. Bioprospecting microbial hosts to valorize lignocellulose biomass – Environmental perspectives and value-added bioproducts. Chemosphere 2021. In Press. https://doi.org/10.1016/J.CHEMOSPHERE.2021.13257410.1016/j.chemosphere.2021.132574 Search in Google Scholar

[19] Tortorella M. M., et al. A Methodological Integrated Approach to Analyse Climate Change Effects in Agri-Food Sector: The TIMES Water-Energy-Food Module. Int. J. Environ. Res. Public Heal. 2020:17(21):7703. https://doi.org/10.3390/IJERPH1721770310.3390/ijerph17217703 Search in Google Scholar

[20] Mercure J. F., et al. Environmental impact assessment for climate change policy with the simulation-based integrated assessment model E3ME-FTT-GENIE. Energy Strateg. Rev. 2018:20:195–208. https://doi.org/10.1016/J.ESR.2018.03.00310.1016/j.esr.2018.03.003 Search in Google Scholar

[21] Barker T. The effects on competitiveness of coordinated versus unilateral fiscal policies reducing GHG emissions in the EU: an assessment of a 10% reduction by 2010 using the E3ME model. Energy Policy 1998:26(14):1083–1098. https://doi.org/10.1016/S0301-4215(98)00053-610.1016/S0301-4215(98)00053-6 Search in Google Scholar

[22] Novero A. U., et al. The use of light detection and ranging (LiDAR) technology and GIS in the assessment and mapping of bioresources in Davao Region, Mindanao Island, Philippines. Remote Sens. Appl. Soc. Environ. 2019:13:1–11. https://doi.org/10.1016/J.RSASE.2018.10.01110.1016/j.rsase.2018.10.011 Search in Google Scholar

[23] Turner R., et al. Estimation of soil surface roughness of agricultural soils using airborne LiDAR. Remote Sens. Environ. 2014:140:107–117. https://doi.org/10.1016/J.RSE.2013.08.03010.1016/j.rse.2013.08.030 Search in Google Scholar

[24] Partridge M. D., Rickman D. S. Computable General Equilibrium (CGE) Modelling for Regional Economic Development Analysis. 2008:44(10):1311–1328. https://doi.org/10.1080/0034340070165423610.1080/00343400701654236 Search in Google Scholar

[25] Fouré J., Guimbard H., Monjon S. Border carbon adjustment and trade retaliation: What would be the cost for the European Union? Energy Econ. 2016:54:349–362. https://doi.org/10.1016/j.eneco.2015.11.02110.1016/j.eneco.2015.11.021 Search in Google Scholar

[26] Malins C., Plevin R., Edwards R. How robust are reductions in modeled estimates from GTAP-BIO of the indirect land use change induced by conventional biofuels? J. Clean. Prod. 2020:258:120716. https://doi.org/10.1016/j.jclepro.2020.12071610.1016/j.jclepro.2020.120716 Search in Google Scholar

[27] Brinkman M., et al. The distribution of food security impacts of biofuels, a Ghana case study. Biomass and Bioenergy 2020:141:105695. https://doi.org/10.1016/j.biombioe.2020.10569510.1016/j.biombioe.2020.105695 Search in Google Scholar

[28] Komarek A. M., et al. Income, consumer preferences, and the future of livestock-derived food demand. Glob. Environ. Chang. 2021:70:102343. https://doi.org/10.1016/J.GLOENVCHA.2021.10234310.1016/j.gloenvcha.2021.102343761205734857999 Search in Google Scholar

[29] Laborde D., et al. Assessment framework and operational definitions for long-term scenarios. FOODSECURE Work. Pap. Hague: WUR, 2013. Search in Google Scholar

[30] Havlík P., et al. Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. U. S. A. 2014:111(10):3709–3714. https://doi.org/10.1073/PNAS.130804411110.1073/pnas.1308044111395614324567375 Search in Google Scholar

[31] Grosky W. I., Stanchev P. L. An Image Data Model. In Laurini R. (eds) Advances in Visual Information Systems. VISUAL 2000. Lecture Notes in Computer Science, vol. 1929. Springer, 2000. https://doi.org/10.1007/3-540-40053-2_210.1007/3-540-40053-2_2 Search in Google Scholar

[32] Gibon T., et al. A Methodology for Integrated, Multiregional Life Cycle Assessment Scenarios under Large-Scale Technological Change. Environ. Sci. Technol. 2015:49(18):11218–11226. https://doi.org/10.1021/ACS.EST.5B0155810.1021/acs.est.5b0155826308384 Search in Google Scholar

[33] Pauliuk S., Hertwich E. G. Prospective Models of Society’s Future Metabolism: What Industrial Ecology Has to Contribute. In Clift R., Druckman A. (eds) Taking Stock of Industrial Ecology. Springer, 2016. https://doi.org/10.1007/978-3-319-20571-7_210.1007/978-3-319-20571-7_2 Search in Google Scholar

[34] Pavičević M., et al. The potential of sector coupling in future European energy systems: Soft linking between the Dispa-SET and JRC-EU-TIMES models. Applied Energy 2020:267:115100. https://doi.org/10.1016/J.APENERGY.2020.11510010.1016/j.apenergy.2020.115100 Search in Google Scholar

[35] Perpiña Castillo C., et al. Modelling agricultural land abandonment in a fine spatial resolution multi-level land-use model: An application for the EU. Environ. Model. Softw. 2021:136:104946. https://doi.org/10.1016/J.ENVSOFT.2020.10494610.1016/j.envsoft.2020.104946789368733664629 Search in Google Scholar

[36] Krzemień J. Application of Markal Model Generator in Optimizing Energy Systems. J. Sustain. Min. 2013:12(2):35–39. https://doi.org/10.7424/JSM13020510.7424/jsm130205 Search in Google Scholar

[37] Perissi I., et al. Cross-Validation of the MEDEAS Energy-Economy-Environment Model with the Integrated MARKAL-EFOM System (TIMES) and the Long-Range Energy Alternatives Planning System (LEAP). Sustain. 2021:13(4):1967. https://doi.org/10.3390/SU1304196710.3390/su13041967 Search in Google Scholar

[38] Seebregts A., et al. Endogenous learning and technology clustering: Analysis with MARKAL model of the Western European energy system. Int. J. Glob. Energy Issues 2000:14(1–4):289–319. https://doi.org/10.1504/IJGEI.2000.00443010.1504/IJGEI.2000.004430 Search in Google Scholar

[39] Salvucci R., et al. Modelling transport modal shift in TIMES models through elasticities of substitution. Appl. Energy 2018:232:740–751. https://doi.org/10.1016/J.APENERGY.2018.09.08310.1016/j.apenergy.2018.09.083 Search in Google Scholar

[40] Jaunzems D., et al. Adaptation of TIMES model structure to industrial, commercial and residential sectors. Environ. Clim. Technol. 2020:24(1):392–405. https://doi.org/10.2478/RTUECT-2020-002310.2478/rtuect-2020-0023 Search in Google Scholar

[41] Stolarski M. J., et al. Bioenergy technologies and biomass potential vary in Northern European countries. Renew. Sustain. Energy Rev. 2020:133:110238. https://doi.org/10.1016/J.RSER.2020.11023810.1016/j.rser.2020.110238 Search in Google Scholar

[42] Lauka D., Barisa A., Blumberga D. Assessment of the availability and utilization potential of low-quality biomass in Latvia. Energy Procedia 2018:147:518–524. https://doi.org/10.1016/J.EGYPRO.2018.07.06510.1016/j.egypro.2018.07.065 Search in Google Scholar

[43] Irmak S. Biomass as Raw Material for Production of High-Value Products. In Biomass Vol. Estim. Valorization Energy. London: Intechopen, 2017. https://doi.org/10.5772/6550710.5772/65507 Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other