Cite

[1] Lorraine E. Environmentalism. Encyclopedia Britannica 2020 [Online]. [Accessed 15.03.2021]. Available: https://www.britannica.com/topic/environmentalism Search in Google Scholar

[2] Thomas C. Sustainability and the American Naturalist Tradition. Revisiting Henry David Thoreau, Aldo Leopold, Rachel Carson, and Edward O. Wilson. Bielefeld, 2018.10.1515/9783839441787 Search in Google Scholar

[3] Prăvălie R. Nuclear weapons tests and environmental consequences: a global perspective. Ambio 2014:43(6):729–744. https://doi.org/10.1007/s13280-014-0491-110.1007/s13280-014-0491-1416583124563393 Search in Google Scholar

[4] Carson R. Silent Spring. Houghton Mifflin Company, 1962. Search in Google Scholar

[5] United Nations. Report of the World Commission on Environment and Development: Our Common Future. UN, 1987. Search in Google Scholar

[6] Annibaldi V., et al. Renewable Energy Policies: Bibliometric Review and Policy Implications. Environmental and Climate Technologies 2020:24:403–417. https://doi.org/10.2478/rtuect-2020-011210.2478/rtuect-2020-0112 Search in Google Scholar

[7] IPCC. 2021: Climate Change 2021: The Physical Science Basis. The Working Group I contribution to the Sixth Assessment Report. Geneva: IPCC, 2021. Search in Google Scholar

[8] Priedniece V., et al. Treatment of Particulate Matter Pollution: People’s Attitude and Readiness to Act. Environmental and Climate Technologies 2020:24:231–246. https://doi.org/10.2478/rtuect-2020-006910.2478/rtuect-2020-0069 Search in Google Scholar

[9] Muizniece I., Zihare L., Blumberga D. Obtaining the Factors Affecting Bioeconomy. Environmental and Climate Technologies 2019:23:277–291. https://doi.org/10.2478/rtuect-2019-001810.2478/rtuect-2019-0018 Search in Google Scholar

[10] Wacławek S., Padil V. V. T., Černík M. Major Advances and Challenges in Heterogeneous Catalysis for Environmental Applications: A Review. Ecological Chemistry and Engineering S 2018:25(1):9–34. https://doi.org/10.1515/eces-2018-000110.1515/eces-2018-0001 Search in Google Scholar

[11] Han C., et al. Catalysis for Environmental Applications. Sustainable Catalysis. Weinheim: Wiley-vch Verlag GMBH & co. kgaa, 2018:207–230. https://doi.org/10.1002/9783527693030.ch810.1002/9783527693030.ch8 Search in Google Scholar

[12] Saravanan N., Sasikumar K. S. K. Waste water treatment process using Nano TiO2. Mater. Today Proc. 2020:33:2570–2572. https://doi.org/10.1016/j.matpr.2019.12.14310.1016/j.matpr.2019.12.143 Search in Google Scholar

[13] García-Espinoza J. D., et al. Photo-assisted electrochemical advanced oxidation processes for the disinfection of aqueous solutions: A review. Chemosphere 2021:274:129957. https://doi.org/10.1016/j.chemosphere.2021.12995710.1016/j.chemosphere.2021.129957812176333979920 Search in Google Scholar

[14] Banerjee S., Dionysiou D. D., Pillai S. C. Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B Environ. 2015:176–177:396–428. https://doi.org/10.1016/j.apcatb.2015.03.05810.1016/j.apcatb.2015.03.058 Search in Google Scholar

[15] Chen Y., et al. Advanced oxidation processes for water disinfection: Features, mechanisms and prospects. Chem. Eng. J. 2020:409:128207. https://doi.org/10.1016/j.cej.2020.12820710.1016/j.cej.2020.128207 Search in Google Scholar

[16] Chen D., et al. Photocatalytic degradation of organic pollutants using TiO2 -based photocatalysts: A review. J. Clean. Prod. 2020:268:121725. https://doi.org/10.1016/j.jclepro.2020.12172510.1016/j.jclepro.2020.121725 Search in Google Scholar

[17] Cynthia S., Sagadevan S. Physicochemical and magnetic properties of pure and Fe doped TiO2 nanoparticles synthesized by sol-gel method. Mater. Today Proc. In Press, 2020. https://doi.org/10.1016/j.matpr.2020.08.22510.1016/j.matpr.2020.08.225 Search in Google Scholar

[18] Lu C. H., Wu W. H., Kale R. B. Microemulsion-mediated hydrothermal synthesis of photocatalytic TiO2 powders. J. Hazard. Mater. 2008:154(1–3):649-654. https://doi.org/10.1016/j.jhazmat.2007.10.07410.1016/j.jhazmat.2007.10.07418077085 Search in Google Scholar

[19] Srikanth B., et al. Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J. Environ. Manage. 2017:200:60–78. https://doi.org/10.1016/j.jenvman.2017.05.06310.1016/j.jenvman.2017.05.06328570937 Search in Google Scholar

[20] Chen J., et al. Morphology and photocatalytic activity of TiO2 /MXene composites by in-situ solvothermal method. Ceram. Int. 2020:46(12):20088–20096. https://doi.org/10.1016/j.ceramint.2020.05.08310.1016/j.ceramint.2020.05.083 Search in Google Scholar

[21] Li H., et al. Synthesis and investigation of TiO2 nanotube arrays prepared by anodization and their photocatalytic activity. Ceram. Int. 2012:38(7):5791–5797. https://doi.org/10.1016/j.ceramint.2012.04.02610.1016/j.ceramint.2012.04.026 Search in Google Scholar

[22] Wattanawikkam C., Pecharapa W. Structural studies and photocatalytic properties of Mn and Zn co-doping on TiO2 prepared by single step sonochemical method. Radiat. Phys. Chem. 2020:171:108714. https://doi.org/10.1016/j.radphyschem.2020.10871410.1016/j.radphyschem.2020.108714 Search in Google Scholar

[23] Paradisi E., et al. Effect of isopropanol co-product on the long-term stability of TiO2 nanoparticle suspensions produced by microwave-assisted synthesis. Chem. Eng. Process. - Process Intensif. 2021:159:108242. https://doi.org/10.1016/j.cep.2020.10824210.1016/j.cep.2020.108242 Search in Google Scholar

[24] Lee H., et al. The synthesis and coating process of TiO2 nanoparticles using CVD process. Powder Technol. 2011:214(1):66–68. https://doi.org/10.1016/j.powtec.2011.07.03610.1016/j.powtec.2011.07.036 Search in Google Scholar

[25] De Vietro N., Tursi A., Beneduci A. Photocatalytic inactivation of Escherichia coli bacteria in water using low pressure plasma deposited TiO2 cellulose fabric. Photochem. Photobiol. Sci. 2019:18(9):2248–2258. https://doi.org/10.1039/c9pp00050j10.1039/C9PP00050J Search in Google Scholar

[26] Diebold U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003:48(5–8):53–229. https://doi.org/10.1016/S0167-5729(02)00100-010.1016/S0167-5729(02)00100-0 Search in Google Scholar

[27] X. Jiang et al., ‘Anatase and rutile in evonik aeroxide P25: Heterojunctioned or individual nanoparticles?,’ Catal. Today 2018:300:12–17. https://doi.org/10.1016/j.cattod.2017.06.010.10.1016/j.cattod.2017.06.010 Search in Google Scholar

[28] Chen Y., et al. The fabrication of self-floating Ti3+ /N co-doped TiO2 /diatomite granule catalyst with enhanced photocatalytic performance under visible light irradiation. Appl. Surf. Sci. 2018:467–468:514–525. https://doi.org/10.1016/j.apsusc.2018.10.14610.1016/j.apsusc.2018.10.146 Search in Google Scholar

[29] Etacheri V., et al. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C Photochem. Rev. 2015:25:1–29. https://doi.org/10.1016/j.jphotochemrev.2015.08.00310.1016/j.jphotochemrev.2015.08.003 Search in Google Scholar

[30] Xiu Z., et al. Ti3+-TiO2/Ce3+-CeO2 Nanosheet heterojunctions as efficient visible-light-driven photocatalysts. Mater. Res. Bull. 2017:100:191–197. https://doi.org/10.1016/j.materresbull.2017.12.01610.1016/j.materresbull.2017.12.016 Search in Google Scholar

[31] Xiu Z., et al. Recent advances in Ti3+ self-doped nanostructured TiO2 visible light photocatalysts for environmental and energy applications. Chem. Eng. J. 2019:382:123011. https://doi.org/10.1016/j.cej.2019.12301110.1016/j.cej.2019.123011 Search in Google Scholar

[32] Bui V. K. H., et al. Titanium dioxide microscale and macroscale structures: A mini-review. Nanomaterials 2020:10(6):1–31. https://doi.org/10.3390/nano1006119010.3390/nano10061190735343132570846 Search in Google Scholar

[33] Reghunath S., et al. A review of hierarchical nanostructures of TiO2: Advances and applications. Appl. Surf. Sci. Adv. 2021:3:100063. https://doi.org/10.1016/j.apsadv.2021.10006310.1016/j.apsadv.2021.100063 Search in Google Scholar

[34] Yin J. J., et al. Phototoxicity of nano titanium dioxides in HaCaT keratinocytes-Generation of reactive oxygen species and cell damage. Toxicol. Appl. Pharmacol. 2012:263(1):81–88. https://doi.org/10.1016/j.taap.2012.06.00110.1016/j.taap.2012.06.001340729022705594 Search in Google Scholar

[35] Shah S. N. A., et al. Hazardous Effects of Titanium Dioxide Nanoparticles in Ecosystem. Bioinorg. Chem. Appl. 2017:4101735. https://doi.org/10.1155/2017/410173510.1155/2017/4101735 Search in Google Scholar

[36] Wang S. S., et al. Photocatalytic performance of TiO2 thin films deposited on soda-lime glass and the effect of post-annealing on their properties. J. Comput. Theor. Nanosci. 2014:11(7):1667–1673. https://doi.org/10.1166/jctn.2014.354910.1166/jctn.2014.3549 Search in Google Scholar

[37] Yu J., Zhao X. Effect of substrates on the photocatalytic activity of nanometer TiO2 thin films. Mater. Res. Bull. 2000:35(8):1293–1301. https://doi.org/10.1016/S0025-5408(00)00327-510.1016/S0025-5408(00)00327-5 Search in Google Scholar

[38] Magnone E., et al. Facile synthesis of TiO2-supported Al2O3 ceramic hollow fiber substrates with extremely high photocatalytic activity and reusability. Ceram. Int. 2020:47(6):7764–7775. https://doi.org/10.1016/j.ceramint.2020.11.12110.1016/j.ceramint.2020.11.121 Search in Google Scholar

[39] Kim C., et al. Immobilization of TiO2 on an ITO substrate to facilitate the photoelectrochemical degradation of an organic dye pollutant. Electrochim. Acta 2009:54(24):5715–5720. https://doi.org/10.1016/j.electacta.2009.05.01810.1016/j.electacta.2009.05.018 Search in Google Scholar

[40] Medvids A., et al. Anatase or rutile TiO2 nanolayer formation on Ti substrates by laser radiation: Mechanical, photocatalytic and antibacterial properties. Opt. Laser Technol. 2020:138:106898. https://doi.org/10.1016/j.optlastec.2020.10689810.1016/j.optlastec.2020.106898 Search in Google Scholar

[41] Gualdrón-Reyes A. F., et al. Effect of Metal Substrate on Photo(electro)catalytic Activity of B-Doped Graphene Modified TiO2 Thin Films: Role of Iron Oxide Nanoparticles at Grain Boundaries of TiO2. J. Phys. Chem. C 2018:122(1):297–306. https://doi.org/10.1021/acs.jpcc.7b0805910.1021/acs.jpcc.7b08059 Search in Google Scholar

[42] Yang J. H., Han Y. S., Choy J. H. TiO2 thin-films on polymer substrates and their photocatalytic activity. Thin Solid Films 2006:495(1–2):266–271. https://doi.org/10.1016/j.tsf.2005.08.19510.1016/j.tsf.2005.08.195 Search in Google Scholar

[43] Maleki H., Bertola V. TiO2 Nanofilms on Polymeric Substrates for the Photocatalytic Degradation of Methylene Blue. ACS Appl. Nano Mater. 2019:2(11):7237–7244. https://doi.org/10.1021/acsanm.9b0172310.1021/acsanm.9b01723 Search in Google Scholar

[44] Nam H.-J., et al. Photocatalytic Activity of Sol−Gel TiO2 Thin Films on Various Kinds of Glass Substrates: The Effects of Na+ and Primary Particle Size. J. Phys. Chem. B 2004:108(24):8254–8259. https://doi.org/10.1021/jp037170t10.1021/jp037170t Search in Google Scholar

[45] Lopez L., et al. Effect of substrate on surface morphology and photocatalysis of large-scale TiO2 films. Appl. Surf. Sci. 2013:265:162–168. https://doi.org/10.1016/j.apsusc.2012.10.156.10.1016/j.apsusc.2012.10.156 Search in Google Scholar

[46] Tuckute S., et al. Tailoring of TiO2 film crystal texture for higher photocatalysis efficiency. Appl. Surf. Sci. 2019:489:576–583. https://doi.org/10.1016/j.apsusc.2019.05.34110.1016/j.apsusc.2019.05.341 Search in Google Scholar

[47] Lelis M., et al. Tailoring of TiO2 film microstructure by pulsed-DC and RF magnetron co-sputtering. Surf. Coatings Technol. 2019:377:124906. https://doi.org/10.1016/j.surfcoat.2019.12490610.1016/j.surfcoat.2019.124906 Search in Google Scholar

[48] ISO 10678:2010: Fine ceramics (advanced ceramics, advanced technical ceramics) — Determination of photocatalytic activity of surfaces in an aqueous medium by degradation of methylene blue. Search in Google Scholar

[49] Naumkin A. V., et al. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database 20, Version 4.1. Gaithersburg: National Institute of Standards and Technology, 2012. http://dx.doi.org/10.18434/T4T88K Search in Google Scholar

[50] Enache-Pommer E., Liu B., Aydil E. S. Electron transport and recombination in dye-sensitized solar cells made from single-crystal rutile TiO2 nanowires. Phys. Chem. Chem. Phys. 2009:11(42):9648–9652. https://doi.org/10.1039/B915345D10.1039/b915345d Search in Google Scholar

[51] Hashimoto K., Irie H., Fujishima A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. 2005:44(12):8269–8285. https://doi.org/10.1143/jjap.44.826910.1143/JJAP.44.8269 Search in Google Scholar

[52] Varnagiris S., et al. Black carbon-doped TiO2 films: Synthesis, characterization and photocatalysis. J. Photochem. Photobiol. A Chem. 2019:382:111941. https://doi.org/10.1016/j.jphotochem.2019.11194110.1016/j.jphotochem.2019.111941 Search in Google Scholar

[53] Domínguez-Espíndola R. B., et al. Photoelectrocatalytic inactivation of fecal coliform bacteria in urban wastewater using nanoparticulated films of TiO2 and TiO2/Ag. Environ. Technol. 2017:38(5):606–614. https://doi.org/10.1080/09593330.2016.120514810.1080/09593330.2016.1205148 Search in Google Scholar

[54] Wang W., et al. Advances in photocatalytic disinfection of bacteria: Development of photocatalysts and mechanisms. J. Environ. Sci. 2015:34:232–247. https://doi.org/10.1016/j.jes.2015.05.003.10.1016/j.jes.2015.05.003 Search in Google Scholar

[55] Yu J. C., et al. Photocatalytic Activity, Antibacterial Effect, and Photoinduced Hydrophilicity of TiO2 Films Coated on a Stainless Steel Substrate. Environ. Sci. Technol. 2003:37(10):2296–2301. https://doi.org/10.1021/es025948310.1021/es0259483 Search in Google Scholar

[56] Hu H., et al. Preparations of TiO2 film coated on foam nickel substrate by sol-gel processes and its photocatalytic activity for degradation of acetaldehyde. J. Environ. Sci. 2007:19(1):80–85. https://doi.org/10.1016/S1001-0742(07)60013-810.1016/S1001-0742(07)60013-8 Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other