Open Access

Modelling the Combined Heat and Power Plants with Steam Turbines in the Study of Energy Security Problems


Cite

[1] Bushuyev V., Voropai N., Masterpanov A., Shafranik Yu. Energeticheskaja bezopasnostj Rossii (Energy security of Russia.). Moscow: 1998. (in Russian) Search in Google Scholar

[2] Pyatkova N., Senderov S., Cheltsov M. Application of a two-level technology for research in solving energy security problems. Izvestiya RAN. Power Engineering 2000:6:31–39. Search in Google Scholar

[3] Smirnova E., Senderov S. Energy security problems at the regional level: situation analysis and main trends. E3S Web Conferences 2019:77:01009 https://doi.org/10.1051/e3sconf/2019770100910.1051/e3sconf/20197701009 Search in Google Scholar

[4] Voropai N. I. Sistemnie issledovanija v energetike. Retrospektiva nauchnih napravlenij (Energy Systems Institute schools of thought in hindsight.). Novosibirsk: Nauka, 2010. (in Russian) Search in Google Scholar

[5] Belyaev L. S., et al. Metodi issledovanija i upravlenija sistemami energetiki (Methods of analysis and control of energy systems.). Novosibirsk: Nauka, 1987. (in Russian) Search in Google Scholar

[6] Antonov G. N., et al. Metodi i modeli issledovanija zhivuchesti sistem energetiki (Methods and models for studying the survivability of energy systems.). Novosibirsk: Nauka, 1990. (in Russian) Search in Google Scholar

[7] Yang S., et al. A two-stage optimization model for Park Integrated Energy System operation and benefit allocation considering the effect of Time-Of-Use energy price. Energy 2020:195:117013. https://doi.org/10.1016/j.energy.2020.11701310.1016/j.energy.2020.117013 Search in Google Scholar

[8] Wu D., et al. Comparative study of optimization method and optimal operation strategy for multiscenario integrated energy system. Energy 2020:217:119311. https://doi.org/10.1016/j.energy.2020.119311.10.1016/j.energy.2020.119311 Search in Google Scholar

[9] Luo F., et al. Research on optimal allocation strategy of multiple energy storage in regional integrated energy system based on operation benefit increment. International Journal of Electrical Power & Energy Systems 2021:125:106376. https://doi.org/10.1016/j.ijepes.2020.10637610.1016/j.ijepes.2020.106376 Search in Google Scholar

[10] Li P., et al. Hierarchically partitioned coordinated operation of distributed integrated energy system based on a master-slave game. Energy 2021:214:119006. https://doi.org/10.1016/j.energy.2020.11900610.1016/j.energy.2020.119006 Search in Google Scholar

[11] Qin C., et al. Weighted directed graph based matrix modelling of integrated energy systems. Energy 2021:214:118886. https://doi.org/10.1016/j.energy.2020.118886.10.1016/j.energy.2020.118886 Search in Google Scholar

[12] Chamandoust H., et al. Multi-objectives Optimal Scheduling in Smart Energy Hub System with Electrical and Thermal Responsive Loads. Environmental and Climate Technologies 2020:24(1):209–232. https://doi.org/10.2478/rtuect-2020-001310.2478/rtuect-2020-0013 Search in Google Scholar

[13] Gravelsins A., et al. Power Sector Flexibility through Power-to-Heat and Power-to-Gas Application – System Dynamics Approach. Environmental and Climate Technologies 2019:23(3):319–332. https://doi.org/10.2478/rtuect-2019-009810.2478/rtuect-2019-0098 Search in Google Scholar

[14] Chamandoust H., Peyvand N. Energy Economic Management of Hybrid Energy System Based on Short-term Generation and Demand Response. Environmental and Climate Technologies 2020:24(1):653–668. https://doi.org/10.2478/rtuect-2020-004010.2478/rtuect-2020-0040 Search in Google Scholar

[15] Koch K., Höfner P., Gaderer M. Techno-economic system comparison of a wood gas and a natural gas CHP plant in flexible district heating with a dynamic simulation model. Energy 2020:202:117710. https://doi.org/10.1016/j.energy.2020.11771010.1016/j.energy.2020.117710 Search in Google Scholar

[16] Lai F., et al. Operation optimization on the large-scale CHP station composed of multiple CHP units and a thermocline heat storage tank. Energy Conversion and Management 202:211:112767. https://doi.org/10.1016/j.enconman.2020.11276710.1016/j.enconman.2020.112767 Search in Google Scholar

[17] Liu M., Wang S., Yan J. Operation scheduling of a coal-fired CHP station integrated with power-to-heat devices with detail CHP unit models by particle swarm optimization algorithm. Energy 2021:214:119022. https://doi.org/10.1016/j.energy.2020.11902210.1016/j.energy.2020.119022 Search in Google Scholar

[18] Qian Z., Agnew B. An assessment of Horlock’s approximate analysis of feed and district heating cycles for steam and CHP plant. Thermal Science and Engineering Progress 2021:22:100746. https://doi.org/10.1016/j.tsep.2020.10074610.1016/j.tsep.2020.100746 Search in Google Scholar

[19] Santos M., et al. Design and modelling of a small scale biomass-fueled CHP system based on Rankine technology. Energy Procedia 2017:129:676–683. https://doi.org/10.1016/j.egypro.2017.09.14310.1016/j.egypro.2017.09.143 Search in Google Scholar

[20] Baccioli A., et al. Potential energy recovery by integrating an ORC in a biogas plant. Applied Energy 2019:256:113960. https://doi.org/10.1016/j.apenergy.2019.11396010.1016/j.apenergy.2019.113960 Search in Google Scholar

[21] Wang Y., et al. Analysis of a biogas-fed SOFC CHP system based on multi-scale hierarchical modelling. Renewable Energy 2021:163:78–87. https://doi.org/10.1016/j.renene.2020.08.09110.1016/j.renene.2020.08.091 Search in Google Scholar

[22] Horlock J. H. Approximate analyses of feed and district heating cycles for steam combined heat and power plant. Proceedings of the Institution of Mechanical Engineers 1987:201:A3. https://doi.org/10.1243%2FPIME_PROC_1987_201_024_0210.1243/PIME_PROC_1987_201_024_02 Search in Google Scholar

[23] Zorkaltsev V. I. Methods of forecasting and analysis of fuel supply system efficiency. Moscow: Nauka, 1988. Search in Google Scholar

[24] Rudenko Yu. N. (ed.). Nadjozhnostj sistem energetiki i ih oborudovanija (Reliability of energy systems and their equipment.). Moscow: Energoatomizdat, 1994. (in Russian) Search in Google Scholar

[25] Beresneva N. M., Pyatkova N. I. Features of Critical Facilities Determining for the Fuel and Energy Complex in Research of Fuel and Energy Supply. E3S web of conferences 2020:209:06001. https://doi.org/10.1051/e3sconf/20202090600110.1051/e3sconf/202020906001 Search in Google Scholar

[26] Kozlov M. V., A. et al. Upravlenie topivno-energeticheskoj sistemoj pri krupnomashtabnih povrezhdenijah. I. Setevaja modelj I programmnaja realizacija (The fuel and energy system control in the event of large-scale damages. I. A network model and its software implementation.). Izv. RAN. Teoriya i sistemy upravleniya, 2017:6:50–73. (in Russian)10.1134/S1064230717060090 Search in Google Scholar

[27] Belyaev L. S., Rudenko Yu. N. (ed.). Teoreticheskie osnovi sistemnih isledovanij v energetike (Theoretical foundations of energy systems research.). Novosibirsk: Nauka, 1986. (in Russian) Search in Google Scholar

[28] Popyrin L. S., Samusev V. I., Epelyptein V. V. Avtomatizacija matematicheskogo modelirovanija teploenergeticheskih ustanovok (Automation of mathematical modelling of thermal power plants.). Moscow: Nauka, 1981. (in Russian) Search in Google Scholar

[29] Vulman F. A., Koryagin A. V., Krivoshey M. Z. Matematicheskoe modelirovanie teplovih shem paroturbinnih ustanovok (Computer-based mathematical modelling of steam turbine plants cycles.). Moscow: Mashinostroienie, 1985. (in Russian) Search in Google Scholar

[30] Rivkin S. L., Alexandrov A. A. Termodinamicheskie svojstva vodi i vodjanogo para: Spravochnik (Thermodynamic properties of water and water vapor: a handbook.). Moscow: Energoatomizdat, 1984. (in Russian) Search in Google Scholar

[31] Grigorieva V. A., Zorina V. M. (ed.). Thermal and nuclear power plants: a handbook. Moscow: Energoatomizdat, 1989. Search in Google Scholar

[32] RD 34.30.711 Tipovaja normativnaja harakteristika turboagregata PT-60-130/13 LMZ (Type performance standard of pt-60-130/13 lmz turbine unit.). Moscow: USSR Ministry of Energy, 1974. (in Russian) Search in Google Scholar

[33] Wolfram Mathematica [Online]. [Accessed 12.03.2021]. Available https://www.wolfram.com/mathematica/ Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other