Open Access

The Effect of the Carbon Tax Value on the Optimal Parameters and Characteristics of Coal Power Plants

, , ,  and   
Dec 14, 2020

Cite
Download Cover

[1] Kanniche M., Moullec Y. L., Authier O., Hagi H., Bontemps D., Neveux T., Louis-Louisy M. Up-to-date CO2 capture in thermal power plants. Energy Procedia 2017:114:95–103. https://doi.org/10.1016/j.egypro.2017.03.115210.1016/j.egypro.2017.03.1152Search in Google Scholar

[2] Gravelsins A., Bazbauers G., Blumberga A., Blumberga D. Power Sector Flexibility through Power-to-Heat and Power-to-Gas Application – System Dynamics Approach. Environmental and Climate Technologies 2019:23(3):319–332. https://doi.org/10.2478/rtuect-2019-009810.2478/rtuect-2019-0098Search in Google Scholar

[3] Blumberga D., Chen B., Ozarska A., Indzere Z., Lauka D. Energy, Bioeconomy, Climate Changes and Environment Nexus. Environmental and Climate Technologies 2019:23(3):370–392. https://doi.org/10.2478/rtuect-2019-010210.2478/rtuect-2019-0102Search in Google Scholar

[4] Locatelli G., Mancini M. Small–medium sized nuclear coal and gas power plant: A probabilistic analysis of their financial performances and influence of CO2 cost. Energy Policy 2010:38(10):6360–6374. https://doi.org/10.1016/j.enpol.2010.06.02710.1016/j.enpol.2010.06.027Search in Google Scholar

[5] Supekar S. D., Skerlos S. J. Reassessing the Efficiency Penalty from Carbon Capture in Coal-Fired Power Plants. Environmental Science & Technology 2015:49(20):12576–12584. https://doi.org/10.1021/acs.est.5b0305210.1021/acs.est.5b03052Search in Google Scholar

[6] Siefert N. S., Litster S. Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants. Applied Energy 2013:107:315–328. https://doi.org/10.1016/j.apenergy.2013.02.00610.1016/j.apenergy.2013.02.006Search in Google Scholar

[7] Bohm M. C., Herzog H. J., Parsons J. E., Sekar R. C. Capture-ready coal plants – Options, technologies and economics. International J. Greenhouse Gas Control 2007:1(1):113–120. https://doi.org/10.1016/S1750-5836(07)00033-310.1016/S1750-5836(07)00033-3Search in Google Scholar

[8] Pettinau A., Ferrara F., Tola V., Cau G. Techno-economic comparison between different technologies for CO2 -free power generation from coal. Applied Energy 2017:193 :426–439. https://doi.org/10.1016/j.apenergy.2017.02.05610.1016/j.apenergy.2017.02.056Search in Google Scholar

[9] Meneses L. R., Silva J. C., Cota S., Kikas T. Thermodynamic, Environmental and Economic Simulation of an Organic Rankine Cycle (ORC) for Waste Heat Recovery: Terceira Island Case Study. Environmental and Climate Technologies 2019:23(2):347–365. https://doi.org/10.2478/rtuect-2019-007310.2478/rtuect-2019-0073Search in Google Scholar

[10] Kler A. M., Zharkov P. V., Epishkin N. O. Parametric optimization of supercritical power plants using gradient methods. Energy 2019:189:116230. https://doi.org/10.1016/j.energy.2019.11623010.1016/j.energy.2019.116230Search in Google Scholar

[11] Kler A. M., Potanina Y. M., Marinchenko A. Y. Co-optimization of thermal power plant flowchart, thermodynamic cycle parameters, and design parameters of components. Energy 2020:193:116679. https://doi.org/10.1016/j.energy.2019.11667910.1016/j.energy.2019.116679Search in Google Scholar

Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Life Sciences, other