Open Access

Ranking of By-products for Single Cell Oil Production. Case of Latvia

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
SPECIAL ISSUE OF ENVIRONMENTAL AND CLIMATE TECHNOLOGIES PART I: The Green Deal Umbrella for Environmental and Climate Technologies

Cite

[1] FAO. The State of World Fisheries and Aquaculture 2018. Meeting the sustainable development goals. Rome, 2018.Search in Google Scholar

[2] de O. Finco A. M., Mamani L. D. G., de Carvalho J. C., de Melo Pereira G. V., Thomaz-Soccol V., Soccol C. R. Technological trends and market perspectives for production of microbial oils rich in omega-3. Critical Reviews in Biotechnology 2017:37(5):656–671. https://doi.org/10.1080/07388551.2016.121322110.1080/07388551.2016.1213221Search in Google Scholar

[3] Spalvins K., Blumberga D. Production of Fish Feed and Fish Oil from Waste Biomass Using Microorganisms: Overview of Methods Analyzing Resource Availability. Environmental and Climate Technology 2018:22(1):149–164. https://doi.org/10.2478/rtuect-2018-001010.2478/rtuect-2018-0010Search in Google Scholar

[4] Spolaore P., Joannis-Cassan C., Duran E., Isambert A. Commercial applications of microalgae. J. Biosci. Bioeng. 2006:101(2):87–96. https://doi.org/10.1263/jbb.101.8710.1263/jbb.101.87Search in Google Scholar

[5] Wong M. K. M., Tsui C. K. M., Au D. W. T., Vrijmoed L. L. P. Docosahexaenoic acid production and ultrastructure of the thraustochytrid Aurantiochytrium mangrovei MP2 under high glucose concentrations. Mycoscience 2008:49(4):266–270. https://doi.org/10.1007/S10267-008-0415-710.1007/S10267-008-0415-7Search in Google Scholar

[6] Ward O. P., Singh A. Omega-3/6 fatty acids: Alternative sources of production. Process Biochemistry 2005:40(12):3627–3652. https://doi.org/10.1016/j.procbio.2005.02.02010.1016/j.procbio.2005.02.020Search in Google Scholar

[7] Raghukumar S. Ecology of the marine protists, the labyrinthulomycetes (Thraustochytrids and labyrinthulids). European Journal of Protistology 2002:38(2):127–145. https://doi.org/10.1078/0932-4739-0083210.1078/0932-4739-00832Search in Google Scholar

[8] Takahashi Y., Yoshida M., Inouye I., Watanabe M. M. Diplophrys mutabilis sp. nov., a New Member of Labyrinthulomycetes from Freshwater Habitats. Protist 2014:165(1):50–65. https://doi.org/10.1016/j.protis.2013.10.00110.1016/j.protis.2013.10.001Search in Google Scholar

[9] Tsui C. K. M. Labyrinthulomycetes phylogeny and its implications for the evolutionary loss of chloroplasts and gain of ectoplasmic gliding. Molecular Phylogenetics and Evolution 2009:50(1):129–140. https://doi.org/10.1016/j.ympev.2008.09.02710.1016/j.ympev.2008.09.027Search in Google Scholar

[10] Pan J., del Campo J., Keeling P. J. Reference Tree and Environmental Sequence Diversity of Labyrinthulomycetes. Journal of Eukaryotic Microbiology 2017:64(1):88–96. https://doi.org/10.1111/jeu.1234210.1111/jeu.12342Search in Google Scholar

[11] Alderman D. J., Gareth Jones E. B. Physiological requirements of two marine phycomycetes, Althornia crouchii and Ostracoblabe implexa. Transactions in the British Mycological Society 1971:57(2):213-IN3. https://doi.org/10.1016/S0007-1536(71)80003-710.1016/S0007-1536(71)80003-7Search in Google Scholar

[12] Goldstein S. Development and Nutrition of New Species of Thraustochytrium. American Journal of Botany 1963:50(3):271–279, Mar. 1963. https://doi.org/10.1002/j.1537-2197.1963.tb12234.x10.1002/j.1537-2197.1963.tb12234.xSearch in Google Scholar

[13] Allemann M. N., Allen E. E. Characterization and Application of Marine Microbial Omega-3 Polyunsaturated Fatty Acid Synthesis. Methods in Enzymology 2018:605:3–32. https://doi.org/10.1016/bs.mie.2018.02.01810.1016/bs.mie.2018.02.01829909829Search in Google Scholar

[14] Ochsenreither K., Glück C., Stressler T., Fischer L., Syldatk C. Production Strategies and Applications of Microbial Single Cell Oils. Frontiers in Microbiology 2016:7:1539. https://doi.org/10.3389/fmicb.2016.0153910.3389/fmicb.2016.01539505022927761130Search in Google Scholar

[15] Patel A., Rova U., Christakopoulos P., Matsakas L. Simultaneous production of DHA and squalene from Aurantiochytrium sp. grown on forest biomass hydrolysates. Biotechnology for Biofuels 2019:12(1). https://doi.org/10.1186/s13068-019-1593-610.1186/s13068-019-1593-6682094231687043Search in Google Scholar

[16] Ryu B. G., Kim K., Kim J., Han J. I., Yang J. W. Use of organic waste from the brewery industry for high-density cultivation of the docosahexaenoic acid-rich microalga, Aurantiochytrium sp. KRS101. Bioresource Technology 2013:129:351–359. https://doi.org/10.1016/j.biortech.2012.11.04910.1016/j.biortech.2012.11.04923262011Search in Google Scholar

[17] Sahin D., Tas E., Altindag U. H. Enhancement of docosahexaenoic acid (DHA) production from Schizochytrium sp. S31 using different growth medium conditions. AMB Express 2018:8(1):78. https://doi.org/10.1186/s13568-018-0540-410.1186/s13568-018-0540-4578398529368055Search in Google Scholar

[18] Yokoyama R., Salleh B., Honda D. Taxonomic rearrangement of the genus Ulkenia sensu lato based on morphology, chemotaxonomical characteristics, and 18S rRNA gene phylogeny (Thraustochytriaceae, Labyrinthulomycetes): Emendation for Ulkenia and erection of Botryochytrium, Parietichytrium. Mycoscience 2007:48(6):329–341. https://doi.org/10.1007/S10267-007-0377-110.1007/S10267-007-0377-1Search in Google Scholar

[19] Lung Y. T., Tan C. H., Show P. L., Lam H. L., Lan J. C. W. Docosahexaenoic acid production from crude glycerol by schizochytrium limacinum SR21. Chemical Engineering Transactions 2015:45:967–972. https://doi.org/10.3303/CET1545162Search in Google Scholar

[20] Pyle D. J., Garcia R. A., Wen Z. Producing docosahexaenoic acid (DHA)-rich algae from biodiesel-derived crude glycerol: Effects of impurities on DHA production and algal biomass composition. J. Agric. Food Chem. 2008:56(11):3933–3939. https://doi.org/10.1021/jf800602s10.1021/jf800602s18465872Search in Google Scholar

[21] Wei L., Pordesimo L. O., Batchelor W. D. Ethanol production from wood: Comparison of hydrolysis fermentation and gasification biosynthesis. ASABE Annu. Int. Meet. Tech. Pap., 2007. https://doi.org/10.13031/2013.2365810.13031/2013.23658Search in Google Scholar

[22] Chen W. H., Jang M. F., Jheng S. L., Lo C. J., Wang W. Cellulosic sugars from biomass: Effect of acid presoaking on pretreatment efficiency and operating cost estimation for sugar production. Bioresource Technology Reports 2019:7:100259. https://doi.org/10.1016/j.biteb.2019.10025910.1016/j.biteb.2019.100259Search in Google Scholar

[23] Wang S. K., Wang X., Tian Y. T., Cui Y. H. Nutrient recovery from tofu whey wastewater for the economical production of docosahexaenoic acid by Schizochytrium sp. S31. Science of the Total Environment 2020:710:136448. https://doi.org/10.1016/j.scitotenv.2019.13644810.1016/j.scitotenv.2019.13644832050374Search in Google Scholar

[24] Humhal T., Kastanek P., Jezkova Z., Cadkova A., Kohoutkova J., Branyik T. Use of saline waste water from demineralization of cheese whey for cultivation of Schizochytrium limacinum PA-968 and Japonochytrium marinum AN-4. Bioprocess and Biosystems Engineering 2017:40(3):395–402. https://doi.org/10.1007/s00449-016-1707-510.1007/s00449-016-1707-527878590Search in Google Scholar

[25] Ren L. J., Li J., Hu Y. W., Ji X. J., Huang H. Utilization of cane molasses for docosahexaenoic acid production by Schizochytrium sp. CCTCC M209059. Korean Journal of Chemical Engineering 2013:30(4):787–789. https://doi.org/10.1007/s11814-013-0020-010.1007/s11814-013-0020-0Search in Google Scholar

[26] Liang Y., Sarkany N., Cui Y., Yesuf J., Trushenski J., Blackburn J. W. Use of sweet sorghum juice for lipid production by Schizochytrium limacinum SR21. Bioresource Technology 2010:101(10):3623–3627. https://doi.org/10.1016/j.biortech.2009.12.08710.1016/j.biortech.2009.12.08720079633Search in Google Scholar

[27] Gupta A., Abraham R. E., Barrow C. J., Puri M. Omega-3 fatty acid production from enzyme saccharified hemp hydrolysate using a novel marine thraustochytrid strain. Bioresource Technology 2015:184:373–378. https://doi.org/10.1016/j.biortech.2014.11.03110.1016/j.biortech.2014.11.03125497057Search in Google Scholar

[28] Pleissner D., Lam W. C., Sun Z., Lin C. S. K. Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresource. Technology 2013:137:139–146. https://doi.org/10.1016/j.biortech.2013.03.08810.1016/j.biortech.2013.03.08823587816Search in Google Scholar

[29] Spalvins K., Zihare L., Blumberga D. Single cell protein production from waste biomass: Comparison of various industrial by-products. Energy Procedia 2018:147:409–418. https://doi.org/10.1016/j.egypro.2018.07.11110.1016/j.egypro.2018.07.111Search in Google Scholar

[30] Spalvins K., Vamza I., Blumberga D. Single Cell Oil Production from Waste Biomass: Review of Applicable Industrial By-Products. Environmental and Climate Technologies 2019:23(2):325–337. https://doi.org/10.2478/rtuect-2019-007110.2478/rtuect-2019-0071Search in Google Scholar

[31] Spalvins K., Vamza I., Blumberga D. Single cell oil production from waste biomass: Review of applicable industrial by-products. Environmental and Climate Technologies 2019:23(3):325–337. https://doi.org/10.2478/rtuect-2019-007110.2478/rtuect-2019-0071Search in Google Scholar

[32] Spalvins K., Zihare L., Blumberga D. Single cell protein production from waste biomass: comparison of various industrial by-products. Energy procedia 2018:147:409–418. https://doi.org/10.1016/j.egypro.2018.07.11110.1016/j.egypro.2018.07.111Search in Google Scholar

[33] Quispe C. A. G., Coronado C. J. R., Carvalho J. A. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews 2013:27:475–493. https://doi.org/10.1016/j.rser.2013.06.01710.1016/j.rser.2013.06.017Search in Google Scholar

[34] Energy balance, in natural units (NACE Rev.2) | Central Statistical Bureau of Latvia. [Online]. [Accessed: 29.12.2019]. Available: https://www.csb.gov.lv/lv/statistika/statistikas-temas/vide-energetika/energetika/tabulas/eng010/energobilance-naturalas-mervienibas-nace-2-red.Search in Google Scholar

[35] Kumar L. R., Kaur R., Yellapu S. K., Zhang X., Tyagi R. D. Biodiesel Production From Oleaginous Microorganisms With Wastes as Raw Materials”, in Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, Elsevier, 2019. https://doi.org/10.1016/B978-0-12-816856-1.00027-010.1016/B978-0-12-816856-1.00027-0Search in Google Scholar

[36] Central Statistical Bureau of Latvia. Environment of Latvia in Figures: Climate Change, Natural Resources and Environmental Quality in 2018. Riga, 2019.Search in Google Scholar

[37] LVĢMC. Latvian Environment, “Review ‘3-Atkritumi,’” 2019. [Online]. Available: http://parissrv.lvgmc.lv/#viewType=reportIndexView&addrefreshtimer=true&donotrenderwithoutrole=true&donotusewrapper=true&type=3WA&incrementCounter=1. [Accessed: 13-May-2020].Search in Google Scholar

[38] Seo Y. H., Lee I., Jeon H., Han J.-I. Efficient conversion from cheese whey to lipid using Cryptococcus curvatus. Biochemical Engineering Journal 2014:90:149–153. https://doi.org/10.1016/j.bej.2014.05.01810.1016/j.bej.2014.05.018Search in Google Scholar

[39] Carota E., Crognale S., D’Annibale A., Gallo A. M., Stazi S. R., Petruccioli M. A sustainable use of Ricotta Cheese Whey for microbial biodiesel production. Science of the Total Environment 2017:584–585:554–560. https://doi.org/10.1016/j.scitotenv.2017.01.06810.1016/j.scitotenv.2017.01.06828169024Search in Google Scholar

[40] U. Quantiy in Tonnes. Milk Market Observatory Production of Dairy products in the TOTAL CHEESE. 2018.Search in Google Scholar

[41] Santonja G. G., Karlis P., Stubdrup K. R. Best Available Techniques (BAT) Reference Document for the Food, Drink and Milk Industries. 2010.Search in Google Scholar

[42] Central Statistical Bureau of Latvia. Production of dairy products. [Online]. [Accessed: 08.12.2019]. Available: https://www.csb.gov.lv/lv/statistika/statistikas-temas/lauksaimnieciba/lopkopiba/tabulas/llg112/piena-produktu-razosana.Search in Google Scholar

[43] dos S. Mathias T. R., de Aguiar P. F., de A. Silva J. B., de Mello P. P. M., Sérvulo E. F. C. Brewery Wastes Reuse for Protease Production by Lactic Acid Bacteria Fermentation. Food Technol. Biotechnol. 2017:55(2):218–224. https://doi.org/10.17113/ftb.55.02.17.437810.17113/ftb.55.02.17.4378556935228867951Search in Google Scholar

[44] Central Statistical Bureau of Latvia, RUG010. Sale of manufactured industrial products (summary of selected code groups of the PRODCOM classification), 2019. [Online]. [Accessed: 12.04.2020]. Available: http://data1.csb.gov.lv/pxweb/en/rupnbuvn/rupnbuvn__rupn__ikgad/RUG010.px/table/tableViewLayout1/.Search in Google Scholar

[45] Catană M., Catană L., Lazăr M. A., Lazăr A. G., Teodorescu R. I., Asănică A. C., Belc N. Achieving of functional ingredient from apple wastes resulting from the apple juice industry. AgroLife Scientific Journal 2018:7(1):9–17.10.2478/alife-2018-0041Search in Google Scholar

[46] Jacob F. F., Striegel L., Rychlik M., Hutzler M., Methner F.-J. Spent Yeast from Brewing Processes: A Biodiverse Starting Material for Yeast Extract Production. Fermentation 2019:5(2):51. https://doi.org/10.3390/fermentation502005110.3390/fermentation5020051Search in Google Scholar

[47] Park W. K., Moon M., Shin S. E., Cho J. M., Suh W. I., Chang Y. K., Lee B. S. Economical DHA (Docosahexaenoic acid) production from Aurantiochytrium sp. KRS101 using orange peel extract and low cost nitrogen sources. Algal Research 2018:29:71–79. https://doi.org/10.1016/j.algal.2017.11.01710.1016/j.algal.2017.11.017Search in Google Scholar

[48] Antczak A., Marchwicka M., Szadkowski J., Drożdżek M. Sugars Yield Obtained after Acid and Enzymatic Hydrolysis of Fast-growing Poplar Wood Species. BioResources 2018:13(4). https://doi.org/10.15376/biores.13.4.8629-864510.15376/biores.13.4.8629-8645Search in Google Scholar

[49] Scott S. D., Armenta R. E., Berryman K. T., Norman A. W. Use of raw glycerol to produce oil rich in polyunsaturated fatty acids by a thraustochytrid. Enzyme and Microbial Technology 2011:48(3):267–272. https://doi.org/10.1016/j.enzmictec.2010.11.00810.1016/j.enzmictec.2010.11.00822112910Search in Google Scholar

[50] INSIGHT: Europe glycerine spot prices post triple-digit rises on fears of further biodiesel output cuts | ICIS. [Online]. [Accessed: 13.05.2020]. Available: https://www.icis.com/explore/resources/news/2020/04/03/10490229/europe-glycerine-spot-prices-post-triple-digit-rises-on-fears-of-further-biodiesel-output-cuts.Search in Google Scholar

[51] Sara P., Cacheira I., Luís André Roque Fortes. MSc Thesis in Biological Engineering “Heterotrophic cultivation of Thraustochytrids using glycerol and saline medium from a dairy effluent”, Universidade do Algarve 2016.Search in Google Scholar

[52] Fani K. W., Chen F., Jonesi E. B. G., Vrijmoedi L. L. P. Utilization of food processing waste by Thraustochytrids, 2000.Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other