Open Access

Technology for the Production of Environment Friendly Tableware

Environmental and Climate Technologies's Cover Image
Environmental and Climate Technologies
SPECIAL ISSUE OF ENVIRONMENTAL AND CLIMATE TECHNOLOGIES PART I: The Green Deal Umbrella for Environmental and Climate Technologies

Cite

[1] Jambeck J. R., Geyer R., Wilcox C., Siegler T. R., Perryman M., Andrady A., Narayan R., & Law K. L. Plastic waste inputs from land into the ocean. Science 2015:347.10.1126/science.126035225678662Search in Google Scholar

[2] Macrae F. Eight million tons of plastic is dumped at sea each year... that’s five whole bags-full for every foot of the world’s coastline. [Online]. [Accessed 04.02.2020]. Available: https://www.dailymail.co.uk/sciencetech/article-2951256/Study-World-dumps-8-8-million-tons-plastics-oceans.htmlSearch in Google Scholar

[3] Tullo A. H. Fighting ocean plastics at the source. Chemical & Engineering news 2018:96(16):28–34. https://doi.org/10.1021/cen-09616-cover110.1021/cen-09616-cover1Search in Google Scholar

[4] Walther B. A., Kunz A., & Hu C-S. Type and quantity of coastal debris pollution in Taiwan: A 12-year nationwide assessment using citizen science data. Marine Pollution Bulletin 2018:135:862–872. https://doi.org/10.1016/j.marpolbul.2018.08.02510.1016/j.marpolbul.2018.08.02530301108Search in Google Scholar

[5] Kubule A., Klavenieks K., Veseree R., & Blumberga D. Towards Efficient Waste Management in Latvia: An Empirical Assessment of Waste Composition. Environment and Climate Technologies 2019:23(2):114–120. https://doi.org/10.2478/rtuect-2019-005910.2478/rtuect-2019-0059Search in Google Scholar

[6] Shah A. A., Abdul F. H., & Ahmed H. S. Biological degradation of plastics: A comprehensive review. Biotechnology Advances 2008:26(3):246–265. https://doi.org/10.1016/j.biotechadv.2007.12.00510.1016/j.biotechadv.2007.12.00518337047Search in Google Scholar

[7] Siracusa V., Rocculi P., Romani S., & Rosa M. D. Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology 2008:19:634–643. https://doi.org/10.1016/j.tifs.2008.07.00310.1016/j.tifs.2008.07.003Search in Google Scholar

[8] Vaverkova M., Adamcová D., & Zloch J. How do degradable/biodegradable plastic materials decompose in home composting environment? Journal of Ecological Engineering 2014:15(4):82–89. https://doi.org/10.12911/22998993.1125461Search in Google Scholar

[9] Song J. H., Murphy R. J., Narayn R., & Davies G. B. H. Biodegradable and compostable alternatives to conventional plastics. Philosophical Transactions of the Royal Society B 2009:364:2127–2139. https://doi.org/10.1098/rstb.2008.028910.1098/rstb.2008.0289287301819528060Search in Google Scholar

[10] Gurunathan T., Mohanty S., & Nayak K. S. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing 2015:77:1–25. https://doi.org/10.1016/j.compositesa.2015.06.00710.1016/j.compositesa.2015.06.007Search in Google Scholar

[11] Elanchezhian C., Ramnath B. V., Ramakrishnan G., Rajendrakumar M., Naveenkumar V., & Saravanakumar M. K. Review on mechanical properties of natural fiber composites. In Proceedings of International Conference on Materials, Minerals and Energy (PMME) 2018:5(1):1785–1790. https://doi.org/10.1016/j.matpr.2017.11.27610.1016/j.matpr.2017.11.276Search in Google Scholar

[12] Silva N., & Blumberga D. Why Biopolymer Packaging Materials are Better. Environmental and Climate Technologies 2019:23(2):366–384. https://doi.org/10.2478/rtuect-2019-007410.2478/rtuect-2019-0074Search in Google Scholar

[13] Olt J., Soots K., Olt A., & Rooni V. Exploration of the possibilities for the production of tableware from the bran of various cereals. Proceedings of the 9th International Scientific Conference Rural Development, 2019. http://doi.org/10.15544/RD.2019.020.10.15544/RD.2019.020Search in Google Scholar

[14] Satyanarayana K. G., Arizaga G. G. C., & Wypych F. Biodegradable composites based on lignocellulosic fibers - An overview. Progress in Polymer Science 2009:34(9):982–1021. https://doi.org/10.1016/j.progpolymsci.2008.12.00210.1016/j.progpolymsci.2008.12.002Search in Google Scholar

[15] Fieschi M., & Pretato U. Role of compostable tableware in food service and waste management. A life cycle assessment study. Waste Management 2018:73:14–25. https://doi.org/10.1016/j.wasman.2017.11.03610.1016/j.wasman.2017.11.03629198522Search in Google Scholar

[16] Willett K., & Howell B. Using local invasive species and flora to manufacture collagen based biodegradable plastic tableware. In Proceedings of the 21st International Conference on Engineering Design (ICED17), Vancouver, Canada, 2017.Search in Google Scholar

[17] Alun N., Sun Z. H., Jing Q. R., Hu D. R., & Yang C. L. Study of microstructure and dynamic mechanical analysis of biodegradable tableware produced with corn straw. Advanced Materials Research 2012:380:160–163. https://doi.org/10.4028/www.scientific.net/AMR.380.16010.4028/www.scientific.net/AMR.380.160Search in Google Scholar

[18] Liu J., Jia C., & He C. Rice straw and cornstarch biodegradable composites. AASRI Procedia 2012:3:83–88. https://doi.org/10.1016/j.aasri.2012.11.01510.1016/j.aasri.2012.11.015Search in Google Scholar

[19] Soots K., Olt A., & Olt J. Manufacturing technology and mechanical properties of biodegradable tableware made from cereal bran. Presented at 47th Int. symposium on Actual Tasks on Agricultural Engineering, Opatija, Croatia, 2019.Search in Google Scholar

[20] Pietsch W. Agglomeration Processes: Phenomena, Technologies, Equipment. Weinheim: Wiley-VCH Verlag, 2002. https://doi.org/10.1002/978352761980110.1002/9783527619801Search in Google Scholar

[21] Raud M., Tutt M., Olt J., & Kikas T. Dependence of the hydrolysis efficiency on the lignin content in lignocellulosic material. International Journal of Hydrogen Energy 2016:41(37):16338–16343. https://doi.org/10.1016/j.ijhydene.2016.03.19010.1016/j.ijhydene.2016.03.190Search in Google Scholar

[22] Priedniece V., Spalvins K., Ivanovs K., Pubule J., & Blumberga D. Bioproducts from Potatoes: A Review. Environmental and Climate Technologies 2017:21(1):18–27. https://doi.org/10.1515/rtuect-2017-001310.1515/rtuect-2017-0013Search in Google Scholar

[23] ASTM D6400 – 12. Standard Specification for Labeling of Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilities. [Online]. [Accessed 18.07.2019]. Available: https://www.astm.org/Standards/D6400.htmSearch in Google Scholar

[24] ASTM D6868 – 17. Standard Specification for Labeling of End Items that Incorporate Plastics and Polymers as Coatings or Additives with Paper and Other Substrates Designed to be Aerobically Composted in Municipal or Industrial Facilities, 2017. [Online]. [Accessed 1.07.2019]. Available: https://www.astm.org/Standards/D6868.htmSearch in Google Scholar

[25] DIN EN 13432. Requirements for packaging recoverable through composting and biodegradation. European Standards. 2000. [Online]. [Accessed 18.07.2019]. Available: https://www.en-standard.eu/din-en-13432-requirements-for-packaging-recoverable-through-composting-and-biodegradation-test-scheme-and-evaluation-criteria-for-the-final-acceptance-of-packaging-english-version-of-din-en-13432/?gclid=EAIaIQobChMIi63nsCN3gIViuiaCh0vPgNdEAAYASAAEgJOavD_BwESearch in Google Scholar

[26] ISO 14851:1999. Determination of the ultimate aerobic biodegradability of plastic materials in an aqueous medium - Method by measuring the oxygen demand in a closed respirometer, 1995. (corrected version 2003)Search in Google Scholar

[27] Fischer U., Gomeringer R., Heinzler M., Kilgus R., Näher F., Oesterle S., Paetzold H., & Stephan A. Mechanical and Metal Trades Handbook. Germany: Verlag Europa Lehrmittel, 2010.Search in Google Scholar

[28] Uddeholm Corrax, Technical data sheet. [Online]. [Accessed 14.02.2020]. Available: https://www.uddeholm.com/files/PB_Uddeholm_corrax_english.pdfSearch in Google Scholar

[29] ISO 178:2010. Plastics - Determination of flexural properties. [Online]. [Accessed 14.02.2020]. Available: https://www.iso.org/standard/45091.htmlSearch in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other