Cite

[1] European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the regions. A policy framework for Climate and Energy in the period from 2020 to 2030, 2014. [Online]. [Accessed 15.05.2015]. Available: https://ec.europa.eu/clima/policies/strategies/2030_en.Search in Google Scholar

[2] European Commission. 2050 long-term strategy. Going climate-neutral by 2050, 2018. [Online]. [Accessed 15.05.2015]. https://ec.europa.eu/clima/policies/strategies/2050_enSearch in Google Scholar

[3] Bereiter B., Eggleston S., Schmitt J., Nehrbass-Ahles C., Stocker T. F., Fischer H., Kipfstuhl S., Chappellaz J. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophysical Research Letters 2015:42(2):542–549. https://doi.org/10.1002/2014GL06195710.1002/2014GL061957Search in Google Scholar

[4] European Commission. Communication from the Commission to the European parliament, the European council, the council, the European economic and social committee, the committee of the regions and the European investment bank. A Clean Planet for all A European strategic long-term vision for a prosperous, modern, competitive and climate neutral economy, 2018. [Online]. [Accessed 15.05.2015] https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018DC0773.Search in Google Scholar

[5] Scarlat N., Dallemand J. F., Fahl F. Biogas: Developments and perspectives in Europe. Renewable Energy 2018:129 (A):457–472. https://doi.org/10.1016/j.renene.2018.03.00610.1016/j.renene.2018.03.006Search in Google Scholar

[6] Yu Q., Liu R., Li K., Ma R. A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China. Renewable and Sustainable Energy Reviews 2019:107:51–58. https://doi.org/10.1016/j.rser.2019.02.02010.1016/j.rser.2019.02.020Search in Google Scholar

[7] Timonen K., Sinkko T., Luostarinen S., Tampio E., Joensuu K. LCA of anaerobic digestion: Emission allocation for energy and digestate. Journal of Cleaner Production 2019:235:1567–1579. https://doi.org/10.1016/j.jclepro.2019.06.08510.1016/j.jclepro.2019.06.085Search in Google Scholar

[8] Chen X. Y., Vinh-Thang H., Ramirez A. A., Rodrigue D., Kaliaguine S.. Membrane gas separation technologies for biogas upgrading. RSC Advances 2015:5:31:24399–24448. https://doi.org/10.1039/C5RA00666J10.1039/C5RA00666JSearch in Google Scholar

[9] Karklins A. Biogas production in Latvia. Possibilities of obaining and using biomethane [Online]. [Accessed 15.05.2015]. http://www.sam.gov.lv/images/modules/items/PDF/item_6133_6_LBA_biometans_SM_06.2016.pdf.Search in Google Scholar

[10] BiogasAction – New developments in Latvia. [Online]. [Accessed 15.05.2015]. https://www.fedarene.org/biogasaction-new-developments-latvia-23060.Search in Google Scholar

[11] Development of biogas in Latvia [Online]. [Accessed 15.05.2015]. http://latvijasbiogaze.lv/index.php?c=3.Search in Google Scholar

[12] Central Statistical Bureau of Latvia. Renewable energy consumption in 2017 [Online]. [Accessed 15.05.2015]. https://www.csb.gov.lv/lv/statistika/statistikas-temas/vide-energetika/energetika/meklet-tema/2407-atjaunigoenergoresursu-paterins-2017-gada.Search in Google Scholar

[13] Meyer A. K. P., Ehimen E. A., Holm-Nielsen J. B. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass and Bioenergy 2018:111:154–164. https://doi.org/10.1016/j.biombioe.2017.05.01310.1016/j.biombioe.2017.05.013Search in Google Scholar

[14] Mano Esteves E. M., Naranjo Herrera A. M., Peçanha Esteves V. P., Morgado C. R. V. Life cycle assessment of manure biogas production: A review. Journal of Cleaner Production 219:411–423. https://doi.org/10.1016/j.jclepro.2019.02.09110.1016/j.jclepro.2019.02.091Search in Google Scholar

[15] Muizniece I., Zihare L., Pubule J., Blumberga D. Circular Economy and Bioeconomy Interaction Development as Future for Rural Regions. Case Study of Aizkraukle Region in Latvia. Environmental and Climate Technologies 2019:23(3):129–146. https://doi.org/10.2478/rtuect-2019-008410.2478/rtuect-2019-0084Search in Google Scholar

[16] Lauka D., Slisane D., Ievina L., Muizniece I., Blumberga D. When Bioeconomy Development Becomes a Biomass Energy Competitor. Environmental and Climate Technologies 2019:23(3):347–359. https://doi.org/10.2478/rtuect-2019-0100.10.2478/rtuect-2019-0100Search in Google Scholar

[17] Conti F., Saidi A., Goldbrunner M., CFD Modelling of Biomass Mixing in Anaerobic Digesters of Biogas Plants. Environmental and Climate Technologies 2019:23(3):57–69. https://doi.org/10.2478/rtuect-2019-007910.2478/rtuect-2019-0079Search in Google Scholar

[18] Blumberga, D., Veidenbergs, I., Romagnoli, F., Rochas, C., Žandeckis, A. Bioenergy Technologies, Riga: RTU, 2011.Search in Google Scholar

[19] European Environmental Agency. EMEP/EEA air pollutant emission inventory guidebook 2019. Biological treatment of waste – anaerobic digestion at biogas facilities [Online]. [Accessed 15.05.2015]. Available: file:///C:/Users/jelen/Downloads/5.B.2%20Biological%20treatment%20of%20waste%20-%20anaerobic%20Digestion%20Biogas%202019.pdf.Search in Google Scholar

[20] Li K., Liu R., Sun C. A review of methane production from agricultural residues in China. Renewable and Sustainable Energy Reviews 2016:54:857–865. https://doi.org/10.1016/j.rser.2015.10.10310.1016/j.rser.2015.10.103Search in Google Scholar

[21] Ministry of Environment and Regional development of Latvia. Land policy plan for 2016–2020. [Online]. [Accessed 15.05.2015]. (in Latvian) http://www.varam.gov.lv/in_site/tools/download.php?file=files/text/Sab_lidzdaliba/sab_apsp/VARAM_Zemes_politikas_plans_211116.pdfSearch in Google Scholar

[22] Prochnow A., Heiermann M., Plöchl M., Linke B., Idler C., Amon T., Hobbs P. J. Bioenergy from permanent grassland – A review: 1. Biogas. Bioresource Technology 2009:100:21:4931–4944. https://doi.org/10.1016/j.biortech.2009.05.07010.1016/j.biortech.2009.05.07019546001Search in Google Scholar

[23] Chiumenti A., Borso F., Limina S. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation. Waste Management 2018:71:704–710. https://doi.org/10.1016/j.wasman.2017.03.04610.1016/j.wasman.2017.03.04628389052Search in Google Scholar

[24] Latvian Renewable Energy federation. Biogas energy [Online]. [Accessed 15.05.2015]. Available: https://www.laef.lv/en/biogas//Search in Google Scholar

[25] Putri D., Saputro R., Budiyono B. Biogas Production from Cow Manure. International Journal of Renewable Energy Development 2012:1:2:61–64. https://doi.org/10.14710/ijred.1.2.61-6410.14710/ijred.1.2.61-64Search in Google Scholar

[26] Berglund Odhner P., Sárvári Horváth I., H. Mohseni Kabir M., Schabbauer A. Biogas from lignocellulosic biomass, 2012 [Online]. [Accessed 15.05.2015]. http://www.sgc.se/ckfinder/userfiles/files/SGC247.pdf.Search in Google Scholar

[27] Tong H., Tong Y. W., Peng Y. H. A comparative life cycle assessment on mono- and co-digestion of food waste and sewage sludge. Energy Procedia 2019:158:4166–4171. https://doi.org/10.1016/j.egypro.2019.01.81410.1016/j.egypro.2019.01.814Search in Google Scholar

[28] Climate Change Connection. CO2 equivalents [Online]. [Accessed 15.05.2015]. Available: https://climatechangeconnection.org/emissions/co2-equivalents/Search in Google Scholar

[29] Brēmere I., Indriksone D., Klāvs G., Reķis J. Synergies and Conflicting Impacts of GHG Reduction Measures Recommendation Report. 2016 [Online]. [Accessed 15.05.2015]. Available: https://www.bef.lv/wp-content/uploads/2018/03/Rekomendacijas_zinojums_BEF.pdfSearch in Google Scholar

[30] Advertisements [Online]. [Accessed 15.05.2015]. Available: www.ss.comhttps://www.ss.com/Search in Google Scholar

[31] Tariffs for municipal waste [Online]. [Accessed 15.05.2015]. Available: http://www.getlini.lv/en/private-clientsSearch in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other