Open Access

The potential value of some adipokines and cytokines as diagnostic biomarkers for prostate cancer


Cite

Sharma S, Zapatero-Rodriguez J, O’Kennedy R. Prostate cancer diagnostics: Clinical challenges and the ongoing need for disruptive and effective diagnostic tools. Biotechnology Advances. 2017;35(2):135-49. DOI: 10.1016/j.biotechadv.2016.11.009 Search in Google Scholar

Hanahan D. Hallmarks of cancer: new dimensions. Cancer discovery. 2022;12(1):31-46. DOI: 10.1158/2159-8290.CD-21-1059 Search in Google Scholar

Sfanos KS, De Marzo AM. Prostate cancer and inflammation: the evidence. Histopathology. 2012;60(1):199-215. DOI: 10.1111/j.1365-2559.2011.04033.x Search in Google Scholar

Kurowska P, Mlyczyńska E, Dawid M, Jurek M, Klimczyk D, Dupont J, et al. Vaspin (SERPINA12) expression and function in endocrine cells. Cells. 2021;10(7):1710. DOI: 10.3390/cells10071710 Search in Google Scholar

Zhang P, Wang G, Gui Y, Guo Z, Ren R, Sun Y, et al. Serum vaspin as a predictor of severity and prognosis in acute ischemic stroke patients. Nutritional Neuroscience. 2022;25(4):737-45. DOI: 10.1080/1028415X.2020.1806191 Search in Google Scholar

Agarwal S, Desai S. Vaspin and its relation to cancer. World Academy of Sciences Journal. 2021;3(6):1-6. DOI: 10.3892/wasj.2021.129 Search in Google Scholar

Si H, Zhang Y, Song Y, Li L. Overexpression of adrenomedullin protects mesenchymal stem cells against hypoxia and serum deprivationinduced apoptosis via the Akt/GSK3β and Bcl2 signaling pathways. International journal of molecular medicine. 2018;41(6):3342-52. DOI: 10.3892/ijmm.2018.3533 Search in Google Scholar

Treeck O, Buechler C, Ortmann O. Chemerin and cancer. International journal of molecular sciences. 2019;20(15):3750. DOI: 10.3390/ijms20153750 Search in Google Scholar

Groblewska M, Litman-Zawadzka A, Mroczko B. The role of selected chemokines and their receptors in the development of gliomas. International journal of molecular sciences. 2020;21(10):3704. DOI: 10.3390/ijms21103704 Search in Google Scholar

Jaikanth C, Gurumurthy P, Cherian K, Indhumathi T. Emergence of omentin as a pleiotropic adipocytokine. Experimental and clinical endocrinology & diabetes. 2013;121(07):377-83. DOI: 10.1055/s-0033-1345123 Search in Google Scholar

Uyeturk U, Sarıcı H, Kın Tekce B, Eroglu M, Kemahlı E, Uyeturk U, et al. Serum omentin level in patients with prostate cancer. Medical oncology. 2014;31:1-5. DOI: 10.1007/s12032-014-0923-6 Search in Google Scholar

Li B. Effects of NFκB Inhibition on Macrophage-adipocytes-prostate Cancer Cell Crosstalk: University of Sheffield; 2021. Search in Google Scholar

Wang W, Nag SA, Zhang R. Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Current medicinal chemistry. 2015;22(2):264-89. DOI: 10.2174/092986732166614 1106124315 Search in Google Scholar

Davidsson S, Carlsson J, Greenberg L, Wijkander J, Söderquist B, Erlandsson A. Cutibacterium acnes induces the expression of immunosuppressive genes in macrophages and is associated with an increase of regulatory T-cells in prostate cancer. Microbiology spectrum. 2021;9(3):e01497-21. DOI: 10.1128/spectrum.01497-21 Search in Google Scholar

Kumar A, Khani AT, Ortiz AS, Swaminathan S. GM-CSF: A double-edged sword in cancer immunotherapy. Frontiers in Immunology. 2022;13. DOI: 10.3389/fimmu.2022.901277 Search in Google Scholar

Rourke J, Dranse H, Sinal C. Towards an integrative approach to understanding the role of chemerin in human health and disease. Obesity Reviews. 2013;14(3):245-62. DOI: 10.1111/obr.12009 Search in Google Scholar

Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nature reviews immunology. 2011;11(2):85-97. DOI: 10.1038/nri2921 Search in Google Scholar

Kaur J, Adya R, Tan BK, Chen J, Randeva HS. Identification of chemerin receptor (ChemR23) in human endothelial cells: chemerin-induced endothelial angiogenesis. Biochemical and biophysical research communications. 2010;391(4):1762-8. DOI: 10.1016/j.bbrc.2009.12.150 Search in Google Scholar

Gunter MJ, Hoover DR, Yu H, Wassertheil-Smoller S, Rohan TE, Manson JE, et al. Insulin, insulin-like growth factor-I, endogenous estradiol, and risk of colorectal cancer in postmenopausal women. Cancer research. 2008;68(1):329-37. DOI: 10.1158/0008-5472. CAN-07-2946 Search in Google Scholar

Booth A, Magnuson A, Fouts J, Foster M. Adipose tissue, obesity and adipokines: role in cancer promotion. Hormone molecular biology and clinical investigation. 2015;21(1):57-74. DOI: 10.1515/hmbci-2014-0037 Search in Google Scholar

Erdogan S, Yilmaz FM, Yazici O, Yozgat A, Sezer S, Ozdemir N, et al. Inflammation and chemerin in colorectal cancer. Tumor Biology. 2016;37:6337-42. DOI: 10.1007/s13277-015-4483-y Search in Google Scholar

Wang C, Wu WK, Liu X, To K-F, Chen GG, Yu J, et al. Increased serum chemerin level promotes cellular invasiveness in gastric cancer: a clinical and experimental study. Peptides. 2014;51:131-8. DOI: 10.1016/j.peptides.2013.10.009 Search in Google Scholar

Fazeli MS, Dashti H, Akbarzadeh S, Assadi M, Aminian A, Keramati MR, et al. Circulating levels of novel adipocytokines in patients with colorectal cancer. Cytokine. 2013;62(1):81-5. DOI: 10.1016/j. cyto.2013.02.012 Search in Google Scholar

Wong RS. Apoptosis in cancer: from pathogenesis to treatment. Journal of experimental & clinical cancer research. 2011;30(1):1-14. DOI: 10.1186/1756-9966-30-87 Search in Google Scholar

Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2015;1855(1):104-21. DOI: 10.1016/j.bbcan.2014.09.008 Search in Google Scholar

Zhao X, Zhang Y, Deng L, Wang Y, Li Y, Chen M. The association between Chinese patients’ elevated omentin-1 levels, their clinicopathological features, and the risk of colorectal cancer. International journal of clinical and experimental pathology. 2019;12(6):2264. Search in Google Scholar

Washimi K, Yokose T, Yamashita M, Kageyama T, Suzuki K, Yoshihara M, et al. Specific expression of human intelectin-1 in malignant pleural mesothelioma and gastrointestinal goblet cells. PLoS One. 2012;7(7):e39889. DOI: 10.1371/journal.pone.0039889 Search in Google Scholar

Karabulut S, Afsar CU, Karabulut M, Alis H, Bozkurt MA, Aydogan F, et al. Clinical significance of serum omentin-1 levels in patients with pancreatic adenocarcinoma. BBA clinical. 2016;6:138-42. DOI: 10.1016/j.bbacli.2016.10.002 Search in Google Scholar

Zhou L, He W, Wang W, Zhou D. Altered circulating levels of adipokine omentin-1 in patients with prostate cancer. OncoTargets and therapy. 2019;12:3313. DOI: 10.2147/OTT. S197507 Search in Google Scholar

Fryczkowski M, Bułdak R, Hejmo T, Kukla M, Żwirska-Korczala K. Circulating levels of omentin, leptin, VEGF, and HGF and their clinical relevance with PSA marker in prostate cancer. Disease markers. 2018;2018. DOI: 10.1155/2018/3852401 Search in Google Scholar

Zhang Y-Y, Zhou L-M. Omentin-1, a new adipokine, promotes apoptosis through regulating Sirt1-dependent p53 deacetylation in hepatocellular carcinoma cells. European journal of pharmacology. 2013;698(1-3):137-44. DOI: 10.1016/j. ejphar.2012.11.016 Search in Google Scholar

Ji H, Wan L, Zhang Q, Chen M, Zhao X. The effect of omentin-1 on the proliferation and apoptosis of colon cancer stem cells and the potential mechanism. J buon. 2019;24(1):91-8. Search in Google Scholar

Zhang Y, Zhao X, Chen M. Autocrine action of adipokine omentin1 in the SW480 colon cancer cell line. Oncology Letters. 2020;19(1):892-8. DOI: 10.3892/ol.2019.11131 Search in Google Scholar

Borowski A, Siemińska L. Serum omentin levels in patients with prostate cancer and associations with sex steroids and metabolic syndrome. Journal of Clinical Medicine. 2020;9(4):1179. DOI: 10.3390/jcm9041179 Search in Google Scholar

Lin S, Li X, Zhang J, Zhang Y. Omentin-1: Protective impact on ischemic stroke via ameliorating atherosclerosis. Clinica Chimica Acta. 2021;517:31-40. DOI: 10.1016/j.cca.2021.02.004 Search in Google Scholar

Pin E, Stratton S, Belluco C, Liotta L, Nagle R, Hodge KA, et al. A pilot study exploring the molecular architecture of the tumor microenvironment in human prostate cancer using laser capture microdissection and reverse phase protein microarray. Molecular Oncology. 2016;10(10):1585-94. DOI: 10.1016/j. molonc.2016.09.007 Search in Google Scholar

Neveu B, Moreel X, Deschênes-Rompré M-P, Bergeron A, LaRue H, Ayari C, et al. IL-8 secretion in primary cultures of prostate cells is associated with prostate cancer aggressiveness. Research and reports in urology. 2014:27-34. DOI: 10.2147/RRU.S58643 Search in Google Scholar

Chaiswing L, Weiss HL, Jayswal RD, Clair DKS, Kyprianou N. Profiles of radioresistance mechanisms in prostate cancer. Critical Reviews™ in Oncogenesis. 2018;23(1-2). DOI: 10.1615/CritRevOncog.2018025946 Search in Google Scholar

Touvier M, Fezeu L, Ahluwalia N, Julia C, Charnaux N, Sutton A, et al. Association between prediagnostic biomarkers of inflammation and endothelial function and cancer risk: a nested case-control study. American journal of epidemiology. 2013;177(1):3-13. DOI: 10.1093/aje/kws359 Search in Google Scholar

Yencilek F, Yildirim A, Yilmaz SG, Altinkilic EM, Dalan AB, Bastug Y, et al. Investigation of interleukin-1β polymorphisms in prostate cancer. Anticancer Research. 2015;35(11):6057-61. Search in Google Scholar

Thibodeau S, French A, McDonnell S, Cheville J, Middha S, Tillmans L, et al. Identification of candidate genes for prostate cancer-risk SNPs utilizing a normal prostate tissue eQTL data set. Nature communications. 2015;6(1):8653. DOI: 10.1038/ncomms9653 Search in Google Scholar

Park M-J, Hyun M-H, Yang J-P, Yoon J-M, Park S. Effects of the interleukin-1β-511 C/T gene polymorphism on the risk of gastric cancer in the context of the relationship between race and H. pylori infection: a meta-analysis of 20,000 subjects. Molecular biology reports. 2015;42:119-34. DOI: 10.1007/s11033-014-3748-7 Search in Google Scholar

Wang J, Shi Y, Wang G, Dong S, Yang D, Zuo X. The association between interleukin-1 polymorphisms and their protein expression in Chinese Han patients with breast cancer. Molecular Genetics & Genomic Medicine. 2019;7(8):e804. DOI: 10.1002/mgg3.804 Search in Google Scholar

Urquidi V, Kim J, Chang M, Dai Y, Rosser CJ, Goodison S. CCL18 in a multiplex urine-based assay for the detection of bladder cancer. PLoS One. 2012;7(5):e37797. DOI: 10.1371/journal. pone.0037797 Search in Google Scholar

Sun Z, Du C, Xu P, Miao C. Surgical trauma-induced CCL18 promotes recruitment of regulatory T cells and colon cancer progression. Journal of cellular physiology. 2019;234(4):4608-16. DOI: 10.1002/jcp.27245 Search in Google Scholar

Wang L, Wang Y-x, Zhang D-z, Fang X-j, Sun P-s, Xue H-c. Let-7a mimic attenuates CCL18 induced breast cancer cell metastasis through Lin 28 pathway. Biomedicine & Pharmacotherapy. 2016;78:301-7. DOI: 10.1016/j.biopha.2016.01.028 Search in Google Scholar

Wang Q, Tang Y, Yu H, Yin Q, Li M, Shi L, et al. CCL18 from tumor-cells promotes epithelial ovarian cancer metastasis via mTOR signaling pathway. Molecular Carcinogenesis. 2016;55(11):1688-99.. DOI: 10.1002/mc.22419 Search in Google Scholar

Hou X, Zhang Y, Qiao H. CCL18 promotes the invasion and migration of gastric cancer cells via ERK1/2/NF-κB signaling pathway. Tumor Biology. 2016;37:641-51. DOI: 10.1007/s13277-015-3825-0 Search in Google Scholar

Meng F, Li W, Li C, Gao Z, Guo K, Song S. CCL18 promotes epithelial-mesenchymal transition, invasion and migration of pancreatic cancer cells in pancreatic ductal adenocarcinoma. International journal of oncology. 2015;46(3):1109-20. DOI: 10.3892/ijo.2014.2794 Search in Google Scholar

Su Y, Zhou Y, Sun Y-j, Wang Y-L, Yin J-y, Huang Y-j, et al. Macrophage-derived CCL18 promotes osteosarcoma proliferation and migration by upregulating the expression of UCA1. Journal of Molecular Medicine. 2019;97:49-61. DOI: 10.1007/s00109-018-1711-0 Search in Google Scholar

She L, Qin Y, Wang J, Liu C, Zhu G, Li G, et al. Tumor-associated macrophages derived CCL18 promotes metastasis in squamous cell carcinoma of the head and neck. Cancer cell international. 2018;18(1):1-14. DOI: 10.1186/s12935-018-0620-1 Search in Google Scholar

Schmid S, Csanadi A, Kozhuharov N, Tchudjin M, Kayser C, Rawluk J, et al. CC-chemokine ligand 18 is an independent prognostic marker in lymph node-positive non-small cell lung cancer. Anticancer Research. 2018;38(7):3913-8. DOI: 10.21873/anticanres.12676 Search in Google Scholar

Chen G, Liang Y-x, Zhu J-g, Fu X, Chen Y-f, Mo R-j, et al. CC chemokine ligand 18 correlates with malignant progression of prostate cancer. BioMed research international. 2014;2014. . DOI: 10.1155/2014/230183 Search in Google Scholar

Hong I-S. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Experimental & molecular medicine. 2016;48(7):e242-e. DOI: 10.1038/emm.2016.64 Search in Google Scholar

Rho CR, Park M-y, Kang S. Effects of granulocyte-macrophage colony-stimulating (GM-CSF) factor on corneal epithelial cells in corneal wound healing model. PLoS One. 2015;10(9):e0138020. DOI: 10.1371/journal.pone.0138020 Search in Google Scholar

Urdinguio RG, Fernandez AF, Moncada-Pazos A, Huidobro C, Rodriguez RM, Ferrero C, et al. Immune-Dependent and Independent Antitumor Activity of GM-CSF Aberrantly Expressed by Mouse and Human Colorectal TumorsAntitumor Activity of GM-CSF in Colorectal Tumors. Cancer research. 2013;73(1):395-405. DOI: 10.1158/0008-5472.CAN-12-0806 Search in Google Scholar

Ardekani MTF, Malekzadeh M, Hosseini SV, Bordbar E, Doroudchi M, Ghaderi A. Evaluation of pre-treatment serum levels of IL-7 and GM-CSF in colorectal cancer patients. International journal of molecular and cellular medicine. 2014;3(1):27. Search in Google Scholar

Zemanová M, Staňková B, Ušiakova Z, Tvrzická E, Pazdro A, Petruželka L, et al. Serum adiponectin relates to shortened overall survival in men with squamous cell esophageal cancer treated with preoperative concurrent chemoradiotherapy: A pilot study. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2014;20:2351. DOI: 10.12659/MSM.891088 Search in Google Scholar

Gartung A, Yang J, Sukhatme VP, Bielenberg DR, Fernandes D, Chang J, et al. Suppression of chemotherapy-induced cytokine/lipid mediator surge and ovarian cancer by a dual COX-2/sEH inhibitor. Proceedings of the National Academy of Sciences. 2019;116(5):1698-703. DOI: 10.1073/pnas.1803999116 Search in Google Scholar

Haak VM, Huang S, Panigrahy D. Debris-stimulated tumor growth: a Pandora’s box? Cancer and Metastasis Reviews. 2021:1-11. DOI: 10.1007/s10555-021-09998-8 Search in Google Scholar

Mendoza-Reinoso V, Baek DY, Kurutz A, Rubin JR, Koh AJ, McCauley LK, et al. Unique pro-inflammatory response of macrophages during apoptotic cancer cell clearance. Cells. 2020;9(2):429. DOI: 10.3390/cells9020429 Search in Google Scholar

Morana O, Wood W, Gregory CD. The apoptosis paradox in cancer. International Journal of Molecular Sciences. 2022;23(3):1328. DOI: 10.3390/ijms23031328 Search in Google Scholar

Middleton JD, Fehlman J, Sivakumar S, Stover DG, Hai T. Stress-inducible gene Atf3 dictates a dichotomous macrophage activity in chemotherapy-enhanced lung colonization. International journal of molecular sciences. 2021;22(14):7356. DOI: 10.3390/ijms22147356 Search in Google Scholar

Peng S, Fu Y. FYN: emerging biological roles and potential therapeutic targets in cancer. Journal of Translational Medicine. 2023;21(1):84. DOI: 10.1186/s12967-023-03930-0 Search in Google Scholar

Kaplanov I, Carmi Y, Kornetsky R, Shemesh A, Shurin GV, Shurin MR, et al. Blocking IL-1β reverses the immunosuppression in mouse breast cancer and synergizes withanti-PD-1 for tumor abrogation. Proceedings of the National Academy of Sciences. 2019;116(4):1361-9. DOI: 10.1073/pnas.1812266115 Search in Google Scholar

Ghahartars M, Abtahi S, Zeinali Z, Fattahi MJ, Ghaderi A. Investigation of TNF-α and IL-6 levels in the sera of non-melanoma skin cancer patients. Iranian biomedical journal. 2021;25(2):88. DOI: 10.29252/ibj.25.2.88 Search in Google Scholar

Fletcher R, Tong J, Risnik D, Leibowitz BJ, Wang Y-J, Concha-Benavente F, et al. Non-steroidal anti-inflammatory drugs induce immunogenic cell death in suppressing colorectal tumorigenesis. Oncogene. 2021;40(11):2035-50. DOI: 10.1038/s41388-021-01687-8 Search in Google Scholar

eISSN:
2284-5623
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry, Human Biology, Microbiology and Virology