1. bookVolume 30 (2022): Issue 3 (July 2022)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Carbapenem resistance determinants in Klebsiella pneumoniae strains isolated from blood cultures-comparative analysis of molecular and phenotypic methods

Published Online: 18 Jul 2022
Volume & Issue: Volume 30 (2022) - Issue 3 (July 2022)
Page range: 315 - 326
Received: 27 Jan 2022
Accepted: 21 May 2022
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Introduction: This study provides data on carbapenemases identified in carbapenem-resistant Klebsiella pneumoniae (CR-KP) isolated from blood-cultures by the multiplex molecular method.

Material and method: Between October 2016 and September 2017, 47 non-duplicate Klebsiella pneumoniae (KP) were isolated from blood cultures, from hospitalized patients in the Regional Institute of Gastroenterology and Hepathology, Cluj-Napoca, Romania. Identification and antimicrobial susceptibility tests (AST) were performed by Vitek 2 Compact. The combination disks test (CDT) was used for phenotypic analysis and the LightCycler® Multiplex DNA assay was used to detect and identify the carbapenemases by the LightCycler®z 480 Instrument. The following targets were chosen: blaKPC, blaNDM, blaGES, blaIMP and blaOXA-48 genes and the Cobas® 4800 software variant 2.2.0 was used for the results interpretation.

Results: Taking into consideration the meropenem minimum inhibitory concentration (MIC), 29 KP were susceptible and 18 were not-susceptible (MIC≥0.5 µg ml-1). In the CR-KP group, the CDT identified OXA-48 (10/18) and KPC (7/18) producers. One isolate showed a noninterpretable profile. The multiplex molecular analyses confirmed the carbapenemases production as: 9 CR-KP were KPC and OXA-48 co-producers, 8 were OXA-48 and one was KPC producing strains. In CR-KP group, we found a significant correlation between the CDT and RT-PCR tests results, concerning KPC (p = 0.671). Eight phenotypic results were confirmed by molecular Light-Cycler® Multiplex DNA assay. For CR-KP co-producers (KPC and OXA-48), the CDT could indicate only one carbapenem-hydrolyzing enzyme.

Conclusion: This study highlights the CR-KP co-producers (OXA-48 and KPC). OXA-48-like is more frequently encountered in our area than other carbapenemases.

Keywords

1 Der Kuil WA, Schoffelen AF, Greeff SC De, Thijsen SFT, Alblas HJ, Notermans DW. National laboratory-based surveillance system for antimicrobial resistance : a successful tool to support the control of antimicrobial resistance in the Netherlands. Euro Surveill. 2017;22(46):17-00062. DOI: 10.2807/1560-7917. ES.2017.22.46.17-00062 Open DOISearch in Google Scholar

2. Poirel L, Pitout JD, Nordmann P. Carbapenemases: Molecular diversity and clinical consequences. Future Microbiol. 2007; Vol. 2: 501-12. DOI: 10.2217/17460913.2.5.50117927473 Open DOISearch in Google Scholar

3. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase producing Enterobacteriaceae. Emerg Infect Dis. 2011;17(10):1791-8. DOI: 10.3201/eid1710.110655331068222000347 Open DOISearch in Google Scholar

4. Sadek M, Demord A, Poirel L, Nordmann P. Fast and reliable detection of carbapenemase genes in various Gram negatives using a new commercially available fluorescence-based real-time polymerase chain reaction platform. Diagn Microbiol Infect Dis [Internet]. 2020;98(3):115127. DOI: 10.1016/j.diagmicrobio.2020.11512732731095 Open DOISearch in Google Scholar

5. Muntean D, Horhat FG, Badiţoiu L, Dumitraşcu V, Bagiu IC, Horhat DI, et al. Multidrug-resistant gram-negative bacilli: A retrospective study of trends in a tertiary healthcare unit. Med. 2018;54(6). DOI: 10.3390/medicina54060092630707830486311 Open DOISearch in Google Scholar

6. Musuroi C, Licker M, Rus M, Seclaman E, Muntean D, Vulpie S, et al. Difficult to Treat Proteeae strains in high risk Romanian hospital departments. Rev Rom Med Lab. 2021;29(1):53-64. DOI: 10.2478/rrlm-2021-0003 Open DOISearch in Google Scholar

7. Tompa M, Pandrea SL, Tompa R, Iancu M, Junie LM. Phenotypic detection of Carbapenem-resistant Klebsi-ella pneumoniae strains isolated from blood cultures. HVM Bioflux. 2021;13(1):40-6. Search in Google Scholar

8. European Committee on Antimicrobial. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. 2017;Version 7.1:0-77. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EU-CAST_files/Breakpoint_tables/v_7.1_Breakpoint_Tables.pdf Search in Google Scholar

9. Skov R, Skov G. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and /or epidemiological importance. 2017;(December):1-47. Search in Google Scholar

10. Dolinsky AL. M100 Performance Standards for Antimicrobial Susceptibility Testing [Internet]. J Serv Mark. 2017; Vol. 8:27-39. DOI: 10.1108/08876049410065598 Open DOISearch in Google Scholar

11. Roche Diagnostics GmbH. High Pure PCR Template Preparation Kit. 2008;(11):1-26. Available from: www. roche-applied-science.com (Accessed 20th september 2018). Search in Google Scholar

12. Roche. LightCycler ® Multiplex DNA Master HypProbe. Roche [Internet]. 2016;(11):1-18. Available from: https://www.n-genetics.com/products/1295/1023/14284.pdf (Accessed 19th September 2018) Search in Google Scholar

13. Red L. LightMix Universal Color Compensation Hexaplex Version. 2016;V160606: 4-11. Available from: https://www.roche-as.es/lm_pdf/LightMix_40-0320_CC_ColorCompensation_Hexaplex_V160606.pdf (Accessed 18th September 2018) Search in Google Scholar

14. Tib Molbiol. LightMix Modular OXA-48 Carbapenemase. 2018; Version180101 (58):1-4. available from: https://www.roche-as.es/lm_pdf/MDx_58_0628_96_OXA_48_Carbapenemase_BR_EN_FR_ES_IT_DE_PT.pdf (Accessed 19th september 2018) Search in Google Scholar

15. Jones RN, Flonta M, Gurler N, Cepparulo M, Mendes RE, Castanheira M. Resistance surveillance program report for selected European nations (2011). Diagn Microbiol Infect Dis [Internet]. 2014;78(4):429-36. DOI: 10.1016/j.diagmicrobio.2013.10.00824440509 Open DOISearch in Google Scholar

16. Székely E, Damjanova I, Jánvári L, Vas KE, Molnár S, Bilca D V., et al. First description of blaNDM-1, blaOXA-48, blaOXA-181 producing Enterobacteriaceae strains in Romania. Int J Med Microbiol. 2013;303(8):697-700. DOI: 10.1016/j.ijmm.2013.10.00124183483 Open DOISearch in Google Scholar

17. Gheorghe I, Czobor I, Chifiriuc MC, Borcan E, Ghiţă C, Banu O, et al. Molecular screening of carbapenemase-producing Gram-negative strains in Romanian intensive care units during a one year survey. J Med Microbiol. 2014;63:1303-10. DOI: 10.1099/jmm.0.074039-025060972 Open DOISearch in Google Scholar

18. Rafila A, Talapan D, Dorobăţ OM, Popescu GA, Piţigoi D, Florea D, et al. Emergence of Carbapenemase-producing Enterobacteriaceae, a Public Health Threat: a Romanian Infectious Disease Hospital Based Study. Rev Rom Med Lab. 2015;23(3):295-302. DOI: 10.1515/rrlm-2015-0024 Open DOISearch in Google Scholar

19. Lixandru BE, Cotar AI, Straut M, Usein CR, Cristea D, Ciontea S, et al. Carbapenemase-producing klebsiella pneumoniae in Romania: A six-month survey. PLoS One. 2015;10(11):1-10. DOI: 10.1371/journal. pone.0143214 Open DOISearch in Google Scholar

20. Főldes A, Bilca DV, Székely E. Phenotypic and molecular identification of carbapenemase-producing enterobacteriaceae- challenges in diagnosis and treatment. Rev Rom Med Lab. 2018;26(2):221-30. DOI: 10.2478/rrlm-2018-0018 Open DOISearch in Google Scholar

21. Lopes E, Saavedra MJ, Costa E, de Lencastre H, Poirel L, Aires-de-Sousa M. Epidemiology of carbapenemase-producing Klebsiella pneumoniae in northern Portugal: Predominance of KPC-2 and OXA-48. J Glob Antimicrob Resist [Internet]. 2020;22:349-53. Available from: DOI: 10.1016/j.jgar.2020.04.007 DOI: 10.1016/j.jgar.2020.04.00732348902 Open DOISearch in Google Scholar

22. Haldorsen B, Giske CG, Hansen DS, Helgason KO, Kahlmeter G, Löhr IH, et al. Performance of the EU-CAST disc diffusion method and two MIC methods in detection of Enterobacteriaceae with reduced susceptibility to meropenem: The NordicAST CPE study. J Antimicrob Chemother. 2018;73(10):2738-47. DOI: 10.1093/jac/dky276614832430053113 Open DOISearch in Google Scholar

23. Bartolini A, Frasson I, Cavallaro A, Richter SN, Palù G. Comparison of phenotypic methods for the detection of carbapenem non-susceptible Enterobacteriaceae. Gut Pathog. 2014;6(1):1-7. DOI: 10.1186/1757-4749-6-13403258424860620 Open DOISearch in Google Scholar

24. Ovia-o M, Torres I, González M, Bou G. Evaluation of a novel procedure for rapid detection of carbapenemase-producing Enterobacteriaceae (CPE) using the LightMix modular carbapenemase kits. J Antimicrob Chemother. 2016;71(12):3420-3. DOI: 10.1093/jac/dkw356540007827566313 Open DOISearch in Google Scholar

25. Yoshioka N, Hagiya H, Deguchi M, Hamaguchi S, Kagita M, Nishi I, et al. Multiplex Real-Time PCR Assay for Six Major Carbapenemase Genes. Pathogens. 2021;10(3):276. DOI: 10.3390/pathogens10030276799984133804402 Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo