1. bookVolume 30 (2022): Issue 2 (April 2022)
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
access type Open Access

Snapshot of resistance and virulence features in ESCAPE strains frequently isolated from surgical wound infections in a Romanian hospital

Published Online: 09 May 2022
Volume & Issue: Volume 30 (2022) - Issue 2 (April 2022)
Page range: 215 - 226
Received: 06 May 2021
Accepted: 12 Mar 2022
Journal Details
License
Format
Journal
eISSN
2284-5623
First Published
08 Aug 2013
Publication timeframe
4 times per year
Languages
English
Abstract

Background: The aim of this study was to investigate the phenotypic features (adherence, biofilm formation, virulence, antibiotic susceptibility) and the genetic background of antibiotic resistance in nosocomial ESCAPE strains consecutively isolated from surgical wound infections in hospitalized patients.

Methods: 86 bacterial strains consecutively isolated from various wound infections were analysed by their antibiotic resistance (antibiotic susceptibility testing and PCR for certain antibiotic resistance genes), virulence, biofilm formation and cellular adherence.

Results: The bacterial isolates were identified as: Enterobacterales (n = 39) including Escherichia coli (n = 9), Klebsiella pneumoniae (n = 14) Proteus mirabilis (n = 7), followed by Staphylococcus aureus (n = 26) and Enterococcus faecalis (n = 20). Compared to other isolates, S. aureus strains exhibited the highest capacity to produce soluble virulence factors and to develop biofilms in vitro, with significant differences between methicillin resistant and methicillin susceptible isolates. Among enterobacterial isolates, K. pneumoniae strains expressed the highest capacity to develop biofilms. The assessment of bacterial adherence to HeLa cells revealed that all bacterial strains adhered to the cellular substrata, showing various adherence patterns. E. faecalis strains exhibited a low soluble virulence factors profile, a lower capacity to adhere to epithelial cells and to develop biofilms.

Conclusions: The present study could contribute to the understanding of the pathology of infected wounds, depending on the etio-logical agents, providing data with positive impact on the therapeutic management of surgical wounds infections.

Keywords

1. Sattar F, Sattar Z, Zaman M, Akbar S. Frequency of Post-operative Surgical Site Infections in a Tertiary Care Hospital in Abbottabad, Pakistan. Cureus. 2019;11(3):e4243. DOI: 10.7759/cureus.424310.7759/cureus.4243651661231131166 Search in Google Scholar

2. Călina D, Docea AO, Rosu L, Zlatian O, Rosu AF, Anghelina F, et. al. Antimicrobial resistance development following surgical site infections. Mol Med Rep. 2017;15(2):681-688. DOI: 10.3892/mmr.2016.603410.3892/mmr.2016.6034536485727959419 Search in Google Scholar

3. Mezemir R, Seid A, Gishu T, Demas T, Gize A. Prevalence and root causes of surgical site infections at an academic trauma and burn center in Ethiopia: a cross-sectional study. Patient Saf Surg. 2020;14(3):46. DOI: 10.1186/s13037-019-0229-x10.1186/s13037-019-0229-x694578831921353 Search in Google Scholar

4. Menz BD, Charani E, Gordon DL, Leather AJM, Moonesinghe SR, Phillips CJ. Surgical Antibiotic Prophylaxis in an Era of Antibiotic Resistance: Common Resistant Bacteria and Wider Considerations for Practice. Infect Drug Resist. 2021;7;14:5235-5252. DOI: 10.2147/IDR.S31978010.2147/IDR.S319780866588734908856 Search in Google Scholar

5. Bediako-Bowan AAA, Kurtzhals JAL, Mølbak K, Labi AK, Owusu E, Newman MJ. High rates of multi-drug resistant gram-negative organisms associated with surgical site infections in a teaching hospital in Ghana. BMC Infect Dis. 2020;20:890. DOI: 10.1186/s12879-020-05631-110.1186/s12879-020-05631-1768998233238903 Search in Google Scholar

6 Berceanu Văduva D, Moldovan R, Dumitraşcu V, Muntean D, Bădiţoiu L, Licker M, et. al. [Incidence and sensitivity to antibiotics of germs isolated from surgical wound infections]. Bacteriol Virusol Parazitol Epidemiol. 2003;48(2-3):123-9. [Romanian]. Search in Google Scholar

7. Iskandar K, Sartelli M, Tabbal M, Ansaloni L, Baiocchi GL, Catena F, et. al. Highlighting the gaps in quantifying the economic burden of surgical site infections associated with antimicrobial-resistant bacteria. World J Emerg Surg. 2019;14:50. DOI: 10.1186/s13017-019-0266-x10.1186/s13017-019-0266-x686873531832084 Search in Google Scholar

8. Dhar Y, Han Y. Current developments in biofilm treatments: Wound and implant infections. Eng Regen. 2020;1:64-75. DOI: 10.1016/j.engreg.2020.07.00310.1016/j.engreg.2020.07.003 Search in Google Scholar

9. Barlean MC, Balcos C, Bobu LI, Cretu CI, Platon AL, Stupu A, et. al. Microbiological Evaluation of Surgical Site Infections in the Clinic of Oral and Maxillofacial Surgery of the Sf.Spiridon Clinical Hospital in Iasi, Romania. Rev. Chim.[internet]. 2019;70(11):4077-4082. DOI: 10.37358/RC.19.11.770510.37358/RC.19.11.7705 Search in Google Scholar

10. Mihai MM, Preda M, Lungu I, Gestal MC, Popa MI, Holban AM. Nanocoatings for Chronic Wound Repair-Modulation of Microbial Colonization and Bio-film Formation. Int J Mol Sci. 2018;19(4):1179. DOI: 10.3390/ijms1904117910.3390/ijms19041179597935329649179 Search in Google Scholar

11. Mihai MM, Holban AM, Giurcăneanu C, Popa LG, Buzea M, Filipov M,et. al. Identification and phenotypic characterization of the most frequent bacterial etiologies in chronic skin ulcers. Rom J Morphol Embryol. 2014;55(4):1401-8. Search in Google Scholar

12. Gheorghe I, Tatu AL, Lupu I, Thamer O, Cotar AI, Pircalabioru GG, et. al. Molecular characterization of virulence and resistance features in Staphylococcus aureus clinical strains isolated from cutaneous lesions in patients with drug adverse reactions. Rom Biotech Lett. 2017;22(1):12321-7. Search in Google Scholar

13. Czobor I, Gheorghe I, Banu O, Velican A, Lazăr V, Mihăescu G, et. al. ESBL genes in Multi Drug Resistant Gram negative strains isolated in a one year survey from an Intensive Care Unit in Bucharest, Romania. Rom Biotech Lett. 2014;19(4):9553-60. Search in Google Scholar

14. Potron A, Poirel L, Bussy F, Nordmann P. Occurrence of the carbapenem-hydrolyzing β-lactamase gene bla-OXA-48 in the environment in Morocco. Antimicrob Agents Chemother. 2011;55(11):5413-4. DOI: 10.1128/AAC.05120-1110.1128/AAC.05120-11319504521876064 Search in Google Scholar

15. Handal R, Qunibi L, Sahouri I, Juhari M, Dawodi R, Marzouqa H, et al. Characterization of carbapenem-resistant Acinetobacter baumannii strains isolated from hospitalized patients in Palestine. Int J Microbiol. 2017;2017: 8012104. DOI: 10.1155/2017/801210410.1155/2017/8012104554950128814955 Search in Google Scholar

16. Cattoir V, Poirel L, Rotimi V, Soussy CJ, Nordmann P. Multiplex PCR for detection of plasmid-mediated quinolone resistance qnr genes in ESBL-producing enterobacterial isolates. J Antimicrob Chemother. 2007;60(2):394-7. DOI: 10.1093/jac/dkm20410.1093/jac/dkm20417561500 Search in Google Scholar

17. Martineau F, Picard FJ, Lansac N, Ménard C, Roy PH, Ouellette M, et al. Correlation between the Resistance Genotype Determined by Multiplex PCR Assays and the Antibiotic Susceptibility Patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob Agents Chemother. 2000;44(2):231-8. DOI: 10.1128/AAC.44.2.231-238.200010.1128/AAC.44.2.231-238.20008966310639342 Search in Google Scholar

18. Strommenger B, Kettlitz C, Werner G, Witte W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J Clin Microbiol. 2003;41(9):4089-94. DOI: 10.1128/JCM.41.9.4089-4094.200310.1128/JCM.41.9.4089-4094.200319380812958230 Search in Google Scholar

19. Zhang K, McClure JA, Elsayed S, Louie T, Conly JM. Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol. 2005;43(10):5026-33. DOI: 10.1128/JCM.43.10.5026-5033.200510.1128/JCM.43.10.5026-5033.2005124847116207957 Search in Google Scholar

20. Milheiriço C, Oliveira DC, de Lencastre H. Update to the multiplex PCR strategy for assignment of mec element types in Staphylococcus aureus. Antimicrob Agents Chemother. 2007;51(9):3374-7. DOI: 10.1128/AAC.00275-0710.1128/AAC.00275-07204319817576837 Search in Google Scholar

21. Coffey BM, Anderson GG. Biofilm formation in the 96-well microtiter plate. Methods Mol Biol. 2014;1149:631-41. DOI: 10.1007/978-1-4939-0473-0_4810.1007/978-1-4939-0473-0_4824818938 Search in Google Scholar

22. Holban AM, Cotar AI, Chifiriuc MC, Bleotu C, Banu O, Lazar V. Variation of virulence profiles in some Staphylococcus aureus and Pseudomonas aeruginosa stains isolated from different clinical patients. Afr J Microbiol Res. 2013;7(27):3453-60. Search in Google Scholar

23. Bleotu C, Chifiriuc M, Dracea O, Iordache C, Delcaru C, Lazar V. In vitro modulation of adherence and invasion ability of enteroinvasive Escherichia coli by different viruses. Int J Appl Biol Pharm Technol. 2010;1(3):1359-63. Search in Google Scholar

24. Mihai MM, Holban AM, Giurcăneanu C, Popa LG, Buzea M, Filipov M, et. al. Identification and phenotypic characterization of the most frequent bacterial etiologies in chronic skin ulcers. Rom J Morphol Embryol. 2014;55(4):1401-8. Search in Google Scholar

25. Magiorakos AP, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske C, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. DOI: 10.1111/j.1469-0691.2011.03570.x10.1111/j.1469-0691.2011.03570.x21793988 Search in Google Scholar

26. Sadik O, Ditu LM, Gheorghe I, Holban AM, Curutiu C, Parcalabioru GG, et al. Phenotypic and genotypic evaluation of adherence and biofilm development in Candida albicans respiratory tract isolates from hospitalized patients. Rev Romana Med Lab. 2019;27(1):73-83. DOI: 10.2478/rrlm-2019-000710.2478/rrlm-2019-0007 Search in Google Scholar

27. Li X, Sun L, Zhang P, Wang Y. Novel Approaches to Combat Medical Device-Associated BioFilms. Coatings. 2021; 11:294. DOI: 10.3390/coatings1103029410.3390/coatings11030294 Search in Google Scholar

28. Gonçalves TG, Timm CD. Bioflm production by coagulase-negative Staphylococcus: a review. Arq. Inst. Biol. 2020. 87:1-9,e1382018. DOI: 10.1590/1808-165700138201810.1590/1808-1657001382018 Search in Google Scholar

29. Roy S, Santra S, Das A, Dixith S, Sinha M, Ghatak S, et al. Staphylococcus aureus Biofilm Infection Compromises Wound Healing by Causing Deficiencies in Granulation Tissue Collagen. Ann Surg. 2020; 271(6):1174-85. DOI: 10.1097/SLA.000000000000305310.1097/SLA.0000000000003053706584030614873 Search in Google Scholar

30. Bjarnsholt T, Ciofu O, Molin S, Givskov M, Høiby N. Applying insights from biofilm biology to drug development-can a new approach be developed? Nat Rev Drug Discov. 2013;12(10):791-808. DOI: 10.1038/nrd400010.1038/nrd400024080700 Search in Google Scholar

31. Sun L, Chen Y, Wang D, Wang H, Wu D, Shi K, et al. Surgical site infections caused by highly virulent methicillin-resistant Staphylococcus aureus sequence type 398, China. Emerg Inf Dis. 2019;25(1):157. DOI: 10.3201/eid2501.17186210.3201/eid2501.171862630260930561317 Search in Google Scholar

32. Duman Y, Sevimli R. Investigation of the presence of pantone-valentine leukocidin in Staphylococcus aureus strains isolated from orthopedic surgical site infections. Mikrobiyol bul. 2018;52(4):340-7. DOI: 10.5578/mb.6732810.5578/mb.6732830522420 Search in Google Scholar

33 Agyepong N, Govinden U, Owusu-Ofori A, Essack SY. Multidrug-resistant Gram-negative bacterial infections in a teaching hospital in Ghana. Antimicro Res Infect Control. 2018;7(1):37. DOI: 10.1186/s13756-018-0324-210.1186/s13756-018-0324-2584514429541448 Search in Google Scholar

34. Pochhammer J, Kramer A, Schaeffer M. [Enterococci and surgical site infections : Causal agent or harmless commensals?] Chirurg. 2017;88(5):377-84. [German]. DOI: 10.1007/s00104-017-0388-110.1007/s00104-017-0388-128233041 Search in Google Scholar

35. Kamble E, Pardesi K. Antibiotic Tolerance in Biofilm and Stationary-Phase Planktonic Cells of Staphylococcus aureus. Microb Drug Res. 2020; 27(1):3-12. DOI: 10.1089/mdr.2019.042510.1089/mdr.2019.042532013708 Search in Google Scholar

36. Hadjieva NS, Philipova I, Petrov M, Velinova V, Dicheva V. Surgical site infections in “Queen Joanna-ISUL” University Hospital - etiological structure and antibiotic resistance, a part of INICC project, Int J Infect Dis. 2012;16(S1):E372. DOI: 10.1016/j.ijid.2012.05.47510.1016/j.ijid.2012.05.475 Search in Google Scholar

37. Salmanov AG, Dyndar OA, Vdovychenko YP, Nykoniuk TR, Maidanny IVK, Chorna OO, et.al. Surgical Site Infections and Antimicrobial Resistance in Kyiv City Hospitals, Ukraine. Wiad Lek. 2019;72(5 cz 1):760-764. DOI: 10.36740/WLek20190510710.36740/WLek201905107 Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo