Hydrocarbon-Generating Potential of Eocene Source Rocks in the Abakaliki Fold Belt, Nigeria / Potencial za nastanek oglikovodikov v eocenskih izvornih kamninah nariva Abakaliki
, , and
Jul 25, 2020
About this article
Article Category: Original scientific paper
Published Online: Jul 25, 2020
Page range: 223 - 233
Received: Sep 28, 2019
Accepted: Nov 22, 2019
DOI: https://doi.org/10.2478/rmzmag-2019-0014
Keywords
© 2020 O.A. Oluwajana et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
Figure 1

Figure 2
![A simplified regional section of the Cretaceous and Cenozoic stratigraphy of Anambra Basin, Abakaliki Fold Belt and Calabar Flank, with time stratigraphy and tectonic events [9–10].](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369924e662f30ba53d1fb/j_rmzmag-2019-0014_fig_002.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T093421Z&X-Amz-Expires=3600&X-Amz-Signature=f6a5e6a21c7a44112b20ba27f6574ff2248eb5e6b9e529389277ced3e5572e85&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 3

Figure 4
![Cross-plot of S1 against TOC for the Eocene source rocks in Ihuo-1 well [16], used in distinguishing the hydrocarbon (potential) types. The red dots indicate the analysed samples.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369924e662f30ba53d1fb/j_rmzmag-2019-0014_fig_004.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T093421Z&X-Amz-Expires=3600&X-Amz-Signature=b6fe0e764e1019a5272bfcff38761ef38acb62d13c075a76e621af9f73c91c0d&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 5
![Cross-plot of generation potential (GP) against total organic content (TOC) of Eocene source rocks in Ihuo-1 well [16], used to know the source potential of the sediment. The red dots represent the analysed samples.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369924e662f30ba53d1fb/j_rmzmag-2019-0014_fig_005.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T093421Z&X-Amz-Expires=3600&X-Amz-Signature=c7db2eeee17aa4102a43dc025a9fc94070849eda805a86a5003a17eb89843e3f&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 6
![Van Krevelen diagram for kerogen typing of Eocene shale samples in Ihuo-1 well [16], used to determine the kerogen types of the shale samples. The red dots represent the analysed samples.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369924e662f30ba53d1fb/j_rmzmag-2019-0014_fig_006.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T093421Z&X-Amz-Expires=3600&X-Amz-Signature=4d1f5c8cf1034abab5c34e978e3f41d0249eed87dcf201a7fb05b77e3fa551e5&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 7
![Pseudo-Van Krevelen diagram of Eocene shale samples in Ihuo-1 well [20], used to determine the kerogen types of the shale samples. The red dots represent the analysed samples.](https://sciendo-parsed.s3.eu-central-1.amazonaws.com/647369924e662f30ba53d1fb/j_rmzmag-2019-0014_fig_007.jpg?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Content-Sha256=UNSIGNED-PAYLOAD&X-Amz-Credential=AKIA6AP2G7AKOUXAVR44%2F20250915%2Feu-central-1%2Fs3%2Faws4_request&X-Amz-Date=20250915T093421Z&X-Amz-Expires=3600&X-Amz-Signature=c551e76a720dc1a0fca301a69a92ed8b09255f62c164e114b3aebc1a7ed25486&X-Amz-SignedHeaders=host&x-amz-checksum-mode=ENABLED&x-id=GetObject)
Figure 8

Figure 9

Figure 10

Figure 11

Geochemical results of rock-eval/TOC analyses of Eocene samples in Ihuo-1 well
2204 | 0.8 | 2.7 | 2.58 | 5.28 | 442 | 171 | 323 | 0.51 |
2265 | 1.8 | 3.91 | 2.88 | 6.79 | 441 | 158 | 160 | 0.58 |
2320 | 1.5 | 3.70 | 2.40 | 6.10 | 439 | 156 | 150 | 0.61 |
2355 | 0.8 | 2.56 | 1.45 | 4.01 | 466 | 129 | 181 | 0.64 |
2375 | 0.7 | 6.52 | 3.28 | 9.80 | 455 | 557 | 469 | 0.67 |
2415 | 1.1 | 4.14 | 2.03 | 6.17 | 476 | 177 | 185 | 0.67 |
2510 | 0.9 | 1.60 | 0.83 | 2.43 | 469 | 17 | 92 | 0.66 |
2520 | 1.0 | 5.03 | 2.18 | 7.21 | 478 | 353 | 218 | 0.7 |
2557 | 0.8 | 2.53 | 1.21 | 3.74 | 480 | 116 | 151 | 0.88 |
Input for 1D basin modelling of the Ihuo-1 well as used in the present study_
Overburden | 0–28 | 28 | 0.2–0 | |||
Mio-Oligocene (Coastal plain sands) | 28–584 | 556 | 27–0.2 | |||
Oligocene shaly sands | 584–1328 | 744 | 28–27 | |||
Upper Eocene (Bende/Ameki Formation) | 1328–1426 | 98 | 37.6–34 | 34–28 | ||
Mid-Eocene (Bende/Ameki Formation) | 1426–1862 | 436 | 41.2–39 | 39–37.6 | ||
Lower Eocene (Bende/Ameki Formation) | 1862–2655 | 793 | 49–41.2 | 1 | 214 | |
Lower Eocene (Bende/Ameki Formation) | 2655–2710 | 55 | 54–49 | |||
Lower Eocene (Bende/Ameki Formation) | 2710–2863 | 153 | 56–54 | |||
Palaeocene (Imo Shale) | 2863–3228 | 365 | 66–56 | |||
Maastrichtian (Nkporo Shale) | 3228–3450 | 222 | 71.2–66 |
Measured vitrinite reflectance values of Eocene stratigraphic levels in Ihuo-1 well_
Ihuo-1 | 2204 | 0.80 |
Ihuo-1 | 2265 | 0.78 |
Ihuo-1 | 2375 | 1.03 |
Ihuo-1 | 2557 | 1.48 |