1. bookVolume 5 (2018): Issue 9 (September 2018)
Journal Details
License
Format
Journal
eISSN
2182-1976
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
access type Open Access

A Classification of Mathematical Sculpture

Published Online: 25 Sep 2018
Volume & Issue: Volume 5 (2018) - Issue 9 (September 2018)
Page range: 71 - 94
Journal Details
License
Format
Journal
eISSN
2182-1976
First Published
16 Apr 2016
Publication timeframe
2 times per year
Languages
English
Abstract

In this paper, we define the term Mathematical Sculpture, a task somehow complex. Also, we present a classification of mathematical sculptures as exhaustive and complete as possible. Our idea consists in establishing general groups for different branches of Mathematics, subdividing these groups according to the main mathematical concepts used in the sculpture design.

Keywords

[1] Barrallo, J., Friedman, N., Sequin, C. et al. (Editors). Proceedings of I.S.A.M.A and BRIDGES (Alhambra), University of Granada, ISBN 84–930669–1–5, 2003.Search in Google Scholar

[2] Barrallo, J. Geometría Fractal, Editorial ANAYA Multimedia, ISBN 84–7614–4520, 1992.Search in Google Scholar

[3] Barrallo, J. “Matemáticas y Escultura”, Lecture at Terceres Jornades d’Innovacio Docente: Lénsenyament de les Matemátiques i el Projecte EUROPA, Proceedings, Editorial Servicio de Publicaciones de la UPV, ISBN V–3857–2002, 3–10, 2002.Search in Google Scholar

[4] Brown, R. “Les escultures Simbòliques de John Robinson”, Mètode, 37, “Fons & Forma. Matemàtiques en la Creación Artística Actual”, Editorial Universidad de. Valencia, 67–71, 2003.Search in Google Scholar

[5] Carvajal, J., Gomez, P., Veses, E. et al. Forma y Número. Variaciones, Editorial Fundación Bancaja, ISBN 84–88715–47–I, 1996.Search in Google Scholar

[6] Hart, G. “Sculpture from Symmetrically Arranged Planar Components”, Proceedings of I.S.A.M.A and BRIDGES (Alhambra), University of Granada, ISBN 84–930669–1–5, 315–322, 2003.Search in Google Scholar

[7] Hart, G. “Zonish Polyhedra”, Proceedings of Mathematics & Design 98, II Congress International, Javier Barrallo (Editor), Department of Applied Mathematics, University of the Basque Country, ISBN 84–600–9459–6, 653–660, 1997.Search in Google Scholar

[8] Marar, T. “Max Bill e a Matemática”, Lecture at Primera Jornada de Matemáticas y Arte, University of Valencia, 2004.Search in Google Scholar

[9] Perry, C. “Mathematical Sculpture”, Proceedings of Mathematics & Design 98, II Congress International, Javier Barrallo (Editor), Department of Applied Mathematics, University of the Basque Country, ISBN 84–600–9459–6, 367–384, 1997.Search in Google Scholar

[10] Perry, C. Webpage: http://www.charlesperry.com.Search in Google Scholar

[11] Sequin, C. Webpage: http://http.cs.berkeley.edu/~sequin.Search in Google Scholar

[12] Zalaya, R., Barrallo J. “Mathematical Sculpture Classification”, Proceedings of I.S.A.M.A and BRIDGES (Alhambra), University of Granada, ISBN 84–930669–1–5, 53–60, 2003.Search in Google Scholar

[13] Zalaya, R. “Escultura Matemática: Antecedentes en la Historia del Arte y Clasificación por Conceptos Matemáticos”, research work of the doctoral thesis, included in PhD: \Multidisciplinary Mathematics of Polytechnic University of Valencia”, 2003.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo