This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
A. A. Yousefi, H. F. Haghshenas, B. Shane, J. Harvey, and P. Blankenship, “Performance of warm asphalt mixtures containing reclaimed asphalt pavement, an anti-stripping agent, and recycling agents : A study using a balanced mix design approach,” Constr. Build. Mater., vol. 363, no. October 2022, p. 129633, 2023, doi: 10.1016/j.conbuildmat.2022.129633.Search in Google Scholar
A. Mohammed Babalghaith, S. Koting, N. H. Ramli Sulong, M. R. Karim, and B. Mohammed AlMashjary, “Performance evaluation of stone mastic asphalt (SMA) mixtures with palm oil clinker (POC) as fine aggregate replacement,” Constr. Build. Mater., vol. 262, p. 120546, 2020, doi: 10.1016/j.conbuildmat.2020.120546.Search in Google Scholar
M. Nouali, Z. Derriche, E. Ghorbel, and L. Chuanqiang, “Plastic bag waste modified bitumen a possible solution to the Algerian road pavements,” Road Mater. Pavement Des., vol. 21, no. 6, pp. 1713–1725, 2020, doi: 10.1080/14680629.2018.1560355.Search in Google Scholar
G. Shafabakhsh, O. J. Ani, and S. M. Mirabdolazimi, “Rehabilitation of Asphalt Pavement to Improvement the Mechanical and Environmental Properties of Asphalt Concrete by Using of Nano Particles,” vol. 2, pp. 1–20, 2021, doi: 10.22075/JRCE.2019.17407.1326.Search in Google Scholar
J. Adaluz, E. Victoria, H. Alexander, F. A. Reyes-lizcano, and J. Gabriel, “Mechanical Behavior of Low-Density Polyethylene Waste Modified Hot Mix Asphalt,” 2022.Search in Google Scholar
R. Journal and O. F. T. Infrastructure, “CONSIDERATIONS ON THE BENEFITS OF USING imposed by traditional rehabilitation methods . The European Asphalt Pavement Association ( EAPA ) provides world- wide statistical data on how recycled asphalt is used :,” vol. 6, no. 4, pp. 43–53, 2017, doi: 10.1515/rjti-2017-0053.Search in Google Scholar
“100+ Plastic in the Ocean Statistics & Facts (2020-2021).” https://www.condorferries.co.uk/plastic-in-the-ocean-statistics (accessed Jul. 27, 2022).Search in Google Scholar
A. Almeida, S. Capitão, C. Estanqueiro, and L. Picado-santosc, “Possibility of incorporating waste plastic film flakes into warm-mix asphalt as a bitumen extender,” Constr. Build. Mater., vol. 291, p. 123384, 2021, doi: 10.1016/j.conbuildmat.2021.123384.Search in Google Scholar
H. R. Radeef, N. A. Hassan, A. Razin, and Z. Abidin, “Enhanced Dry Process Method for Modi fi ed Asphalt Containing Plastic Waste,” vol. 8, no. July, pp. 1–14, 2021, doi: 10.3389/fmats.2021.700231.Search in Google Scholar
M. Fonseca, S. Capit, and A. Almeida, “applied sciences Influence of Plastic Waste on the Workability and Mechanical Behaviour of Asphalt Concrete,” 2022.Search in Google Scholar
H. Radhi et al., “Case Studies in Construction Materials The mechanical response of dry-process polymer wastes modified asphalt under ageing and moisture damage,” Case Stud. Constr. Mater., vol. 16, no. January, p. e00913, 2022, doi: 10.1016/j.cscm.2022.e00913.Search in Google Scholar
S. Ullah, M. Raheel, R. Khan, and M. Tariq, “Characterization of physical & mechanical properties of asphalt concrete containing low- & high-density polyethylene waste as aggregates,” Constr. Build. Mater., vol. 301, no. May, p. 124127, 2021, doi: 10.1016/j.conbuildmat.2021.124127.Search in Google Scholar
S. Haider, I. Hafeez, and R. Ullah, “Sustainable use of waste plastic modifiers to strengthen the adhesion properties of asphalt mixtures,” Constr. Build. Mater., vol. 235, p. 117496, 2020, doi: 10.1016/j.conbuildmat.2019.117496.Search in Google Scholar
A. Epps, J. T. Harvey, Y. R. Kim, and R. Roque, “Structural requirements of bituminous paving mixtures,” Transp. New Millenn., pp. 2–3, 2000.Search in Google Scholar
S. Mirzapour Mounes, M. R. Karim, A. Khodaii, and M. H. Almasi, “Evaluation of permanent deformation of geogrid reinforced asphalt concrete using dynamic creep test,” Geotext. Geomembranes, vol. 44, no. 1, pp. 109–116, 2016, doi: 10.1016/j.geotexmem.2015.06.003.Search in Google Scholar
M. Merbouh, “Effect of thermal cycling on the creep-recovery behaviour of road bitumen,” Energy Procedia, vol. 18, no. December 2012, pp. 1106–1114, 2012, doi: 10.1016/j.egypro.2012.05.125.Search in Google Scholar
J. R. M. (JKR), Standard Specification for RoadWork. In Section 4: Flexible Pavement;Malaysian Public Works Department: Kuala Lumpur, vol. 7, no. 1. 2008, pp. 37–72. [Online]. Available: https://www.researchgate.net/publication/269107473_What_is_governance/link/548173090cf22525dcb61443/download%0Ahttp://www.econ.upf.edu/~reynal/Civilwars_12December2010.pdf%0Ahttps://think-asia.org/handle/11540/8282%0Ahttps://www.jstor.org/stable/41857625Search in Google Scholar
M. Ranieri, L. Costa, J. R. M. Oliveira, H. M. R. D. Silva, and C. Celauro, “Asphalt Surface Mixtures with Improved Performance Using Waste Polymers via Dry and Wet Processes,” J. Mater. Civ. Eng., vol. 29, no. 10, 2017, doi: 10.1061/(asce)mt.1943-5533.0002022.Search in Google Scholar
C. R. Monismith, C. L., Ogawa, N., & Freeme, “Permanent deformation characterization of subgrade soils due to repeated loading,” Transp. Res. Rec., 1975.Search in Google Scholar
EN 12697-25, Bituminous mixtures Test methods for hot mix asphalt Part 25: Cyclic compression test. 2005.Search in Google Scholar
“Australian Standard, Method 12.1: Determination of the permanent compressive strain characteristics of asphalt-dynamic creep test., AS 2891.12. 1: Methods of sampling and testing asphalt Standards Australia, Australia, Sydney, 1995”.Search in Google Scholar
“British Standards Institute, Sampling and examination of bituminous mixtures for roads and other paved areas- Part 110: Methods of test for the determination of wheel-tracking rate and depth, BS 598-110, British Standards Institute, 1998”.Search in Google Scholar
“Mix Design Methods For Asphalt Concrete And Other Hot Mix Types, The Asphalt Institute, MS-2, Sixth Edition, 1993”.Search in Google Scholar
W. M. N. W. A. Rahman and A. F. A. Wahab, “Green pavement using recycled Polyethylene Terephthalate (PET) as partial fine aggregate replacement in modified asphalt,” in Procedia Engineering, 2013, vol. 53. doi: 10.1016/j.proeng.2013.02.018.Search in Google Scholar
D. A. Álvarez, A. A. Aenlle, A. J. Tenza-Abril, and S. Ivorra, “Influence of partial coarse fraction substitution of natural aggregate by recycled concrete aggregate in hot asphalt mixtures,” Sustain., vol. 12, no. 1, 2020, doi: 10.3390/SU12010250.Search in Google Scholar
H. Akbulut and C. Gürer, “Use of aggregates produced from marble quarry waste in asphalt pavements,” Build. Environ., vol. 42, no. 5, 2007, doi: 10.1016/j.buildenv.2006.03.012.Search in Google Scholar
I. M. Asi, “Laboratory comparison study for the use of stone matrix asphalt in hot weather climates,” Constr. Build. Mater., vol. 20, no. 10, 2006, doi: 10.1016/j.conbuildmat.2005.06.011.Search in Google Scholar
M. Panda, A. Suchismita, and J. Giri, “Utilization of Ripe Coconut Fiber in Stone Matrix Asphalt Mixes,” Int. J. Transp. Sci. Technol., vol. 2, no. 4, 2013, doi: 10.1260/2046-0430.2.4.289.Search in Google Scholar
E. Ahmadinia, M. Zargar, M. R. Karim, M. Abdelaziz, and P. Shafigh, “Using waste plastic bottles as additive for stone mastic asphalt,” Mater. Des., vol. 32, no. 10, 2011, doi: 10.1016/j.matdes.2011.06.016.Search in Google Scholar
Y. Menaria and R. Sankhla, “Use of Waste Plastic in Flexible Pavements-Green Roads,” Open J. Civ. Eng., vol. 05, no. 03, 2015, doi: 10.4236/ojce.2015.53030.Search in Google Scholar
J. M. Krishnan and K. R. Rajagopal, “On the mechanical behavior of asphalt,” Mech. Mater., vol. 37, no. 11, pp. 1085–1100, 2005, doi: 10.1016/j.mechmat.2004.09.005.Search in Google Scholar
H. Z. Farahani, M. Palassi, and S. Sadeghpour Galooyak, “Thermal analysis of bitumen modified with LDPE and CR,” Pet. Sci. Technol., vol. 35, no. 15, 2017, doi: 10.1080/10916466.2017.1319385.Search in Google Scholar
C. Fang et al., “Pavement properties of asphalt modified with packaging-waste polyethylene,” J. Vinyl Addit. Technol., vol. 20, no. 1, pp. 31–35, 2014, doi: 10.1002/vnl.21328.Search in Google Scholar