Open Access

Effects of GGBS and Fly Ash in Binders on Soil Stabilization for Road Construction


Cite

[1]. ABDULLAH, H.H., SHAHIN, M.A., WALSKE, M.L.: ‘Geo-mechanical behavior of clay soils stabilized at ambient temperature with fly-ash geopolymer-incorporated granulated slag’. Soils and Foundations, 59(6), 1906–1920, 2019. https://doi.org/10.1016/j.sandf.2019.08.005 Search in Google Scholar

[2]. ASSARSON, K.G.: “Stabilisering av kohesionära jordarter med kalk”. Norsk Vegtidskrift, 2, 2-16, 1968. Search in Google Scholar

[3]. ASTM C 215–02: “Standard test method for fundamental transverse, longitudinal, and torsional frequencies of concrete specimens”, American Society for Testing and Materials (ASTM), 2002. Search in Google Scholar

[4]. AUSTSTAB: “Pavement recycling and Stabilisation Association”, 1999. www.auststab.com.au Search in Google Scholar

[5]. BROOKES, S., HUYNH, H.N.: ‘Transport networks and towns in Roman and early medieval England: An application of PageRank to archaeological questions’. Journal of Archaeological Science: Reports, 17, 477–490, 2018. https://doi.org/10.1016/j.jasrep.2017.11.033 Search in Google Scholar

[6]. CELAURO, B., BEVILACQUA, A., LO BOSCO, D., CELAURO, C.: Design Procedures for Soil-Lime Stabilization for Road and Railway Embankments. Part 1-Review of Design Methods, ‘Procedia – Social and Behavioral Sciences’, 53, 754–763, 2012. https://doi.org/10.1016/j.sbspro.2012.09.925 Search in Google Scholar

[7]. DALGAARD, C.-J., KAARSEN, N., OLSSON, O., SELAYA, P. ‘Roman roads to prosperity: Persistence and non-persistence of public infrastructure’. Journal of Comparative Economics, 2022. https://doi.org/10.1016/j.jce.2022.05.003 Search in Google Scholar

[8]. GUPTA, A., BISWAS, S., ARORA, V.K.: “Ranking of stabilizers to stabilize/solidify dredged soil as highway construction material”. Materials Today: Proceedings, 43(2), 1694–1699, 2021. https://doi.org/10.1016/j.matpr.2020.10.037 Search in Google Scholar

[9]. HOV, S., PANIAGUA, P., SÆTRE, C., RUESLÅTTEN, H., STØRDAL, I., MENGEDE, M., MEVIK, C.: ‘Lime-cement stabilisation of Trondheim clays and its impact on carbon dioxide emissions’. Soils and Foundations, 62(3), 101162, 2022. https://doi.org/10.1016/j.sandf.2022.101162 Search in Google Scholar

[10]. HALL, M.R., NAJIM, K.B., KEIKHAEI DEHDEZI, P. ‘9 – Soil stabilisation and earth construction: materials, properties and techniques’. Modern Earth Buildings, 222–255, 2012. https://doi.org/10.1533/9780857096166.2.222 Search in Google Scholar

[11]. INGLES, O.G., METCALF, J.B.: ‘Soil stabilization principles and practice’, Technical report, 374 p., 1972. Search in Google Scholar

[12]. KODIKARA, J., ISLAM, T., SOUNTHARARAJAH, A. ‘Review of soil compaction: History and recent developments’, Transportation Geotechnics, 17, Part B, 24–34, 2018. https://doi.org/10.1016/j.trgeo.2018.09.006 Search in Google Scholar

[13]. KULKARNI, P.P., MANDAL, J.N.: ‘Strength evaluation of soil stabilized with nano silica-cement mixes as road construction material’. Construction and Building Materials, 314, Part B, 125363, 2022. https://doi.org/10.1016/j.conbuildmat.2021.125363 Search in Google Scholar

[14]. LINDH, P.: “Optimizing binder blends for shallow stabilisation of fine-grained soils”. Ground Improvement, 5, 23–34, 2001. https://doi.org/10.1680/grim.2001.5.1.23 Search in Google Scholar

[15]. LINDH, P.: “Compaction- and strength properties of stabilised and unstabilised fine-grained tills”. PhD Thesis. Lund University, Lund, 2004. https://doi.org/10.13140/RG.2.1.1313.6481 Search in Google Scholar

[16]. LINDH, P., & LEMENKOVA, P.: “Evaluation of Different Binder Combinations of Cement, Slag and CKD for S/S Treatment of TBT Contaminated Sediments”. Acta Mechanica et Automatica, 15(4), 236–248, 2021. https://doi.org/10.2478/ama-2021-0030 Search in Google Scholar

[17]. LINDH, P., LEMENKOVA, P.: “Resonant Frequency Ultrasonic P-Waves for Evaluating Uniaxial Compressive Strength of the Stabilized Slag–Cement Sediments”. Nordic Concrete Research, 65(2), 39–62, 2021. https://doi.org/10.2478/ncr-2021-0012 Search in Google Scholar

[18]. LINDH, P., & LEMENKOVA, P.: “Geochemical tests to study the effects of cement ratio on potassium and TBT leaching and the pH of the marine sediments from the Kattegat Strait, Port of Gothenburg, Sweden”. Baltica, 35(1), 47–59, 2022. https://doi.org/10.5200/baltica.2022.1.4 Search in Google Scholar

[19]. LINDH, P., & LEMENKOVA, P.: “Seismic velocity of P-waves to evaluate strength of stabilized soil for Svenska Cellulosa Aktiebolaget Biorefinery Östrand AB, Timrå”. Bulletin of the Polish Academy of Sciences: Technical Sciences, 70(4), 1–9, 2022. https://doi.org/10.24425/bpasts.2022.141593 Search in Google Scholar

[20]. LINDH, P., & LEMENKOVA, P.: “Soil contamination from heavy metals and persistent organic pollutants (PAH, PCB and HCB) in the coastal area of Västernorrland, Sweden”. Gospodarka Surowcami Mineralnymi – Mineral Resources Management, 38(2), 147–168, 2022. https://doi.org/10.24425/gsm.2022.141662 Search in Google Scholar

[21]. MALHOTRA, V.M., & CARINO, N.J.: Handbook on Nondestructive Testing of Concrete (2nd ed.) CRC Press. 384 pp, 2003. https://doi.org/10.1201/9781420040050 Search in Google Scholar

[22]. ROMERA, J.M., PÉREZ-ACEBO, H.: ‘A new method for locating Roman transport infrastructure’. Journal of Cultural Heritage, 43, 175–185, 2020. https://doi.org/10.1016/j.culher.2019.10.004 Search in Google Scholar

[23]. SALAM, Y.A., KUMAR, N.: ‘Investigation of waste material for construction of rural road to protect environment and improvement of rural road construction strength’. Materials Today: Proceedings, 32, Part 3, 487-491, 2020. https://doi.org/10.1016/j.matpr.2020.02.654 Search in Google Scholar

[24]. SARGENT, P., HUGHES, P.N., ROUAINIA, M.: ‘A new low carbon cementitious binder for stabilising weak ground conditions through deep soil mixing’. Soils and Foundations, 56(6), 1021–1034, 2016. https://doi.org/10.1016/j.sandf.2016.11.007 Search in Google Scholar

eISSN:
2286-2218
Language:
English