This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
European Commission. European semester-thematic factsheet. Women in the labour market. Accessed November 19, 2024. Available from: https://commission.europa.eu/document/download/b90d3b1f-870d-461c-9352-fec4bdf7e0cc_ro?filename=european-semester_thematic-factsheet_labour-force-participation-women_ro.pdfSearch in Google Scholar
ORDIN 5707 01/08/2024 - Portal Legislativ. Accessed November 19, 2024. https://legislatie.just.ro/Public/DetaliiDocument/286827Search in Google Scholar
OUG 96 14/10/2003 - Portal Legislativ. Accessed November 18, 2024. https://legislatie.just.ro/Public/DetaliiDocument/47216Search in Google Scholar
Substanțe per- și polifluoroalchilice (PFAS) - ECHA. Accessed November 19, 2024. https://poisoncentres.echa.europa.eu/ro/web/guest/hot-topics/perfluoroalkyl-chemicals-pfasSearch in Google Scholar
OECD Global Forum on the Environment dedicated to Per- and Polyfluoroalkyl Substances (PFAS). Accessed November 19, 2024. Available from: https://www.oecd.org/content/dam/oecd/en/topics/policy-sub-issues/risk-management-risk-reduction-and-sustainable-chemistry2/events/pfas-gfe-2024/global-forum-on-environment-work-on-pfass.pdfSearch in Google Scholar
Jurnalul Oficial al Uniunii Europene. Regulamentul delegat (UE) 2020/784 al Comisiei din 8 aprilie 2020 de modificare a anexei I la Regulamentul (UE) 2019/1021 al Parlamentului European și al Consiliului în ceea ce privește includerea acidului perfluorooctanoic (PFOA), a sărurilor acestuia și a compușilor înrudiți cu acesta. Accessed November 19, 2024. Available from: https://eur-lex.europa.eu/legal-content/RO/TXT/PDF/?uri=CELEX:32020R0784&from=ENSearch in Google Scholar
IARC Monographs evaluate the carcinogenicity of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). Accessed November 19, 2024. Available from: https://www.iarc.who.int/news-events/iarc-monographs-evaluate-the-carcinogenicity-of-perfluorooctanoic-acid-pfoa-and-perfluorooctanesulfonic-acid-pfosSearch in Google Scholar
Substanțe per- și polifluoroalchilice (PFAS) - ECHA. Accessed November 19, 2024. https://echa.europa.eu/ro/hot-topics/perfluoroalkyl-chemicals-pfasSearch in Google Scholar
Jurnalul Oficial al Uniunii Europene. Recomandarea (UE) 2022/1431 a Comisiei din 24 august 2022 privind monitorizarea substanțelor perfluoroalchilate din alimente. Accessed November 19, 2024. Available from: https://eur-lex.europa.eu/legal-content/RO/TXT/HTML/?uri=CELEX%3A32022H1431Search in Google Scholar
Andersen ME, Butenhoff JL, Chang SC, et al. Perfluoroalkyl Acids and Related Chemistries—Toxicokinetics and Modes of Action. Toxicol Sci. 2008;102(1):3–14. doi:10.1093/toxsci/kfm270Search in Google Scholar
Stein CR, Wolff MS, Calafat AM, Kato K, Engel SM. Comparison of polyfluoroalkyl compound concentrations in maternal serum and amniotic fluid: A pilot study. Reprod Toxicol. 2012;34(3):312–316. doi:10.1016/j.reprotox.2012.05.039Search in Google Scholar
Southern Research Institute. Protein Binding of Perfluorohexane Sulfonate, Perfiuorooctane Sulfonate and Perfluorooctanoate to Plasma (Human, Rat, and Monkey), and Various Human-Derived Plasma Protein Fractions. Study ID : 9921.7. Accessed November 20, 2024. Available from: https://cdn.toxicdocs.org/b5/b5GdBBdrX7baRpmeapLREKOq6/b5GdBBdrX7baRpmeapLREKOq6.pdfSearch in Google Scholar
Zhang X, Chen L, Fei XC, Ma YS, Gao HW. Binding of PFOS to serum albumin and DNA: insight into the molecular toxicity of perfluorochemicals. BMC Mol Biol. 2009;10:16. doi:10.1186/1471-2199-10-16Search in Google Scholar
Chen YM, Guo LH. Fluorescence study on site-specific binding of perfluoroalkyl acids to human serum albumin. Arch Toxicol. 2009;83(3):255–261. doi:10.1007/s00204-008-0359-xSearch in Google Scholar
Weiss JM, Andersson PL, Lamoree MH, Leonards PEG, van Leeuwen SPJ, Hamers T. Competitive Binding of Poly- and Perfluorinated Compounds to the Thyroid Hormone Transport Protein Transthyretin. Toxicol Sci. 2009;109(2):206–216. doi:10.1093/toxsci/kfp055Search in Google Scholar
EPA. Health Effects Support Document for Perfluorooctane Sulfonate (PFOS). Available from: https://epa.gov/sites/default/files/2016-05/documents/pfos_hesd_final_508.pdfSearch in Google Scholar
Olsen GW, Burris JM, Ehresman DJ, et al. Half-Life of Serum Elimination of Perfluorooctanesulfonate, Perfluorohexanesulfonate, and Perfluorooctanoate in Retired Fluorochemical Production Workers. Environ Health Perspect. 2007;115(9):1298–1305. doi:10.1289/ehp.10009Search in Google Scholar
Li Y, Fletcher T, Mucs D, et al. Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occup Environ Med. 2018;75(1):46–51. doi:10.1136/oemed-2017-104651Search in Google Scholar
Zhou W, Zhang L, Tong C, et al. Plasma Perfluoroalkyl and Polyfluoroalkyl Substances Concentration and Menstrual Cycle Characteristics in Preconception Women. Environ Health Perspect. 2017;125(6):067012. doi:10.1289/EHP1203Search in Google Scholar
Ding N, Harlow SD, John F Randolph J, et al. Associations of Perfluoroalkyl Substances with Incident Natural Menopause: The Study of Women’s Health Across the Nation. J Clin Endocrinol Metab. 2020;105(9):e3169. doi:10.1210/clinem/dgaa303Search in Google Scholar
Han X, Snow TA, Kemper RA, Jepson GW. Binding of perfluorooctanoic acid to rat and human plasma proteins. Chem Res Toxicol. 2003;16(6):775–781. doi:10.1021/tx034005wSearch in Google Scholar
Park SK, Peng Q, Ding N, Mukherjee B, Harlow SD. Determinants of per- and polyfluoroalkyl substances (PFAS) in midlife women: Evidence of racial/ethnic and geographic differences in PFAS exposure. Environ Res. 2019;175:186–199. doi:10.1016/j.envres.2019.05.028Search in Google Scholar
Rickard BP, Rizvi I, Fenton SE. Per- and poly-fluoroalkyl substances (PFAS) and female reproductive outcomes: PFAS elimination, endocrine-mediated effects, and disease. Toxicology. 2022;465:153031. doi:10.1016/j.tox.2021.153031Search in Google Scholar
Sagiv SK, Rifas-Shiman SL, Webster TF, et al. Sociodemographic and Perinatal Predictors of Early Pregnancy Per- and Polyfluoroalkyl Substance (PFAS) Concentrations. Environ Sci Technol. 2015;49(19):11849. doi:10.1021/acs.est.5b02489Search in Google Scholar
Fromme H, Mosch C, Morovitz M, et al. Pre- and postnatal exposure to perfluorinated compounds (PFCs). Environ Sci Technol. 2010;44(18):7123–7129. doi:10.1021/es101184fSearch in Google Scholar
Caban-Martinez AJ, Solle NS, Feliciano PL, et al. Use of Aqueous Film-Forming Foams and Knowledge of Perfluorinated Compounds among Florida Firefighters. J Occup Environ Med. 2019;61(5):e227. doi:10.1097/JOM.0000000000001566Search in Google Scholar
Freberg BI, Haug LS, Olsen R, et al. Occupational exposure to airborne perfluorinated compounds during professional ski waxing. Environ Sci Technol. 2010;44(19):7723–7728. doi:10.1021/es102033kSearch in Google Scholar
Lundin JI, Alexander BH, Olsen GW, Church TR. Ammonium perfluorooctanoate production and occupational mortality. Epidemiol Camb Mass. 2009;20(6):921–928. doi:10.1097/EDE.0b013e3181b5f395Search in Google Scholar
Heydebreck F, Tang J, Xie Z, Ebinghaus R. Emissions of Per- and Polyfluoroalkyl Substances in a Textile Manufacturing Plant in China and Their Relevance for Workers’ Exposure. Environ Sci Technol. 2016;50(19):10386–10396. doi:10.1021/acs.est.6b03213Search in Google Scholar
PFAS Health Study Systematic Review_1.pdf. Accessed November 19, 2024. https://nceph.anu.edu.au/files/PFAS%20Health%20Study%20Systematic%20Review_1.pdfSearch in Google Scholar
Panieri E, Baralic K, Djukic-Cosic D, Djordjevic AB, Saso L. PFAS Molecules: A Major Concern for the Human Health and the Environment. Toxics. 2022;10(2):44. doi:10.3390/toxics10020044Search in Google Scholar
Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG. A Review of the Pathways of Human Exposure to Poly- and Perfluoroalkyl Substances (PFASs) and Present Understanding of Health Effects. J Expo Sci Environ Epidemiol. 2018;29(2):131. doi:10.1038/s41370-018-0094-1Search in Google Scholar
Zoeller RT, Brown TR, Doan LL, et al. Endocrine-Disrupting Chemicals and Public Health Protection: A Statement of Principles from The Endocrine Society. Endocrinology. 2012;153(9):4097. doi:10.1210/en.2012-1422Search in Google Scholar
Gore AC, Chappell VA, Fenton SE, et al. EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev. 2015;36(6):E1. doi:10.1210/er.2015-1010Search in Google Scholar
Mattsson K, Nilsson-Condori E, Elmerstig E, et al. Fertility outcomes in women with pre-existing type 2 diabetes—a prospective cohort study. Fertil Steril. 2021;116(2):505–513. doi:10.1016/j.fertnstert.2021.02.009Search in Google Scholar
Thong EP, Codner E, Laven JSE, Teede H. Diabetes: a metabolic and reproductive disorder in women. Lancet Diabetes Endocrinol. 2020;8(2):134–149. doi:10.1016/S2213-8587(19)30345-6Search in Google Scholar
Ding GL, Liu Y, Liu ME, et al. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian J Androl. 2015;17(6):948. doi:10.4103/1008-682X.150844Search in Google Scholar
Alexopoulos AS, Blair R, Peters AL. Management of preexisting diabetes in pregnancy: A Review. JAMA. 2019;321(18):1811. doi:10.1001/jama.2019.4981Search in Google Scholar
Mulder JW, Kusters DM, Lennep JER van, Hutten BA. Lipid metabolism during pregnancy: consequences for mother and child. Curr Opin Lipidol. 2024;35(3):133. doi:10.1097/MOL.0000000000000927Search in Google Scholar
Barrett ES, Chen C, Thurston SW, et al. Perfluoroalkyl substances and ovarian hormone concentrations in naturally cycling women. Fertil Steril. 2015;103(5):1261–1270.e3. doi:10.1016/j.fertnstert.2015.02.001Search in Google Scholar
Behr AC, Lichtenstein D, Braeuning A, Lampen A, Buhrke T. Perfluoroalkylated substances (PFAS) affect neither estrogen and androgen receptor activity nor steroidogenesis in human cells in vitro. Toxicol Lett. 2018;291:51–60. doi:10.1016/j.toxlet.2018.03.029Search in Google Scholar
Feng X, Wang X, Cao X, Xia Y, Zhou R, Chen L. Chronic Exposure of Female Mice to an Environmental Level of Perfluorooctane Sulfonate Suppresses Estrogen Synthesis Through Reduced Histone H3K14 Acetylation of the StAR Promoter Leading to Deficits in Follicular Development and Ovulation. Toxicol Sci Off J Soc Toxicol. 2015;148(2):368–379. doi:10.1093/toxsci/kfv197Search in Google Scholar
Nian M, Luo K, Luo F, et al. Association between Prenatal Exposure to PFAS and Fetal Sex Hormones: Are the Short-Chain PFAS Safer? Environ Sci Technol. 2020;54(13):8291–8299. doi:10.1021/acs.est.0c02444Search in Google Scholar
Rashtian J, Chavkin DE, Merhi Z. Water and soil pollution as determinant of water and food quality/contamination and its impact on female fertility. Reprod Biol Endocrinol RBE. 2019;17:5. doi:10.1186/s12958-018-0448-5Search in Google Scholar
Shi Z, Zhang H, Ding L, Feng Y, Xu M, Dai J. The effect of perfluorododecanonic acid on endocrine status, sex hormones and expression of steroidogenic genes in pubertal female rats. Reprod Toxicol. 2009;27(3):352–359. doi:10.1016/j.reprotox.2009.02.008Search in Google Scholar
Vélez MP, Arbuckle TE, Fraser WD. Maternal exposure to perfluorinated chemicals and reduced fecundity: the MIREC study. Hum Reprod Oxf Engl. 2015;30(3):701. doi:10.1093/humrep/deu350Search in Google Scholar
Shen J, Mao Y, Zhang H, et al. Exposure of women undergoing in-vitro fertilization to per-and polyfluoroalkyl substances: Evidence on negative effects on fertilization and high-quality embryos. Environ Pollut. 2024;359:124474. doi:10.1016/j.envpol.2024.124474Search in Google Scholar
Du G, Hu J, Huang Z, et al. Neonatal and juvenile exposure to perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS): Advance puberty onset and kisspeptin system disturbance in female rats. Ecotoxicol Environ Saf. 2019;167:412–421. doi:10.1016/j.ecoenv.2018.10.025Search in Google Scholar
Vélez MP, Arbuckle TE, Fraser WD. Maternal exposure to perfluorinated chemicals and reduced fecundity: the MIREC study. Hum Reprod Oxf Engl. 2015;30(3):701. doi:10.1093/humrep/deu350Search in Google Scholar
Zhang S, Tan R, Pan R, et al. Association of Perfluoroalkyl and Polyfluoroalkyl Substances With Premature Ovarian Insufficiency in Chinese Women. J Clin Endocrinol Metab. 2018;103(7):2543–2551. doi:10.1210/jc.2017-02783Search in Google Scholar
Liew Z, Luo J, Nohr EA, et al. Maternal Plasma Perfluoroalkyl Substances and Miscarriage: A Nested Case–Control Study in the Danish National Birth Cohort. Environ Health Perspect. 2020;128(4):047007. doi:10.1289/EHP6202Search in Google Scholar
Blake BE, Fenton SE. Early life exposure to per- and polyfluoroalkyl substances (PFAS) and latent health outcomes: A review including the placenta as a target tissue and possible driver of peri- and postnatal effects. Toxicology. 2020;443:152565. doi:10.1016/j.tox.2020.152565Search in Google Scholar
Zhang N, Wang WS, Li WJ, Liu C, Wang Y, Sun K. Reduction of progesterone, estradiol and hCG secretion by perfluorooctane sulfonate via induction of apoptosis in human placental syncytiotrophoblasts. Placenta. 2015;36(5):575–580. doi:10.1016/j.placenta.2015.02.008Search in Google Scholar
Everson TM, Sehgal N, Barr DB, et al. Placental PFAS concentrations are associated with perturbations of placental DNA methylation at loci with important roles on cardiometabolic health. medRxiv. Published online May 7, 2024:2024.05.06.24306905. doi:10.1101/2024.05.06.24306905Search in Google Scholar
Groisman L, Berman T, Quinn A, et al. Levels of PFAS concentrations in the placenta and pregnancy complications. Ecotoxicol Environ Saf. 2023;262:115165. doi:10.1016/j.ecoenv.2023.115165Search in Google Scholar
Aimuzi R, Luo K, Huang R, et al. Perfluoroalkyl and polyfluroalkyl substances and maternal thyroid hormones in early pregnancy. Environ Pollut. 2020;264:114557. doi:10.1016/j.envpol.2020.114557Search in Google Scholar
Blake BE, Pinney SM, Hines EP, Fenton SE, Ferguson KK. Associations between longitudinal serum perfluoroalkyl substance (PFAS) levels and measures of thyroid hormone, kidney function, and body mass index in the Fernald Community Cohort. Environ Pollut. 2018;242:894–904. doi:10.1016/j.envpol.2018.07.042Search in Google Scholar
Singh R. Thyroid hormone status and pituitary function in adult rats given oral doses of perfluorooctanesulfonate (PFOS). Toxicology. Published online January 1, 2008. Accessed November 19, 2024. Available from: https://www.academia.edu/14796429/Thyroid_hormone_status_and_pituitary_function_in_adult_rats_given_oral_doses_of_perfluorooctanesulfonate_PFOS_Search in Google Scholar
Fenton SE, Ducatman A, Boobis A, et al. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ Toxicol Chem. 2021;40(3):606–630. doi:10.1002/etc.4890Search in Google Scholar
Jain RB. Association between thyroid profile and perfluoroalkyl acids: Data from NHNAES 2007–2008. Environ Res. 2013;126:51–59. doi:10.1016/j.envres.2013.08.006Search in Google Scholar
Lau C, Thibodeaux JR, Hanson RG, et al. Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. II: postnatal evaluation. Toxicol Sci Off J Soc Toxicol. 2003;74(2):382–392. doi:10.1093/toxsci/kfg122Search in Google Scholar
Lewis RC, Johns LE, Meeker JD. Serum Biomarkers of Exposure to Perfluoroalkyl Substances in Relation to Serum Testosterone and Measures of Thyroid Function among Adults and Adolescents from NHANES 2011–2012. Int J Environ Res Public Health. 2015;12(6):6098–6114. doi:10.3390/ijerph120606098Search in Google Scholar
Wang Y, Rogan WJ, Chen PC, et al. Association between Maternal Serum Perfluoroalkyl Substances during Pregnancy and Maternal and Cord Thyroid Hormones: Taiwan Maternal and Infant Cohort Study. Environ Health Perspect. 2014;122(5):529–534. doi:10.1289/ehp.1306925Search in Google Scholar
Herwig A, Campbell G, Mayer CD, et al. A thyroid hormone challenge in hypothyroid rats identifies T3 regulated genes in the hypothalamus and in models with altered energy balance and glucose homeostasis. Thyroid Off J Am Thyroid Assoc. 2014;24(11):1575–1593. doi:10.1089/thy.2014.0169Search in Google Scholar
Zhang C, Guo L, Zhu B, et al. Effects of 3, 5, 3’-triiodothyronine (t3) and follicle stimulating hormone on apoptosis and proliferation of rat ovarian granulosa cells. Chin J Physiol. 2013;56(5):298–305. doi:10.4077/CJP.2013.BAB186Search in Google Scholar
Kirkland JL, Gardner RM, Mukku VR, Akhtar M, Stancel GM. Hormonal control of uterine growth: the effect of hypothyroidism on estrogen-stimulated cell division. Endocrinology. 1981;108(6):2346–2351. doi:10.1210/endo-108-6-2346Search in Google Scholar
Poppe K, Velkeniers B, Glinoer D. Thyroid disease and female reproduction. Clin Endocrinol (Oxf). 2007;66(3):309–321. doi:10.1111/j.1365-2265.2007.02752.xSearch in Google Scholar
Shi W, Zhang Z, Li M, Dong H, Li J. Reproductive toxicity of PFOA, PFOS and their substitutes: A review based on epidemiological and toxicological evidence. Environ Res. 2024;250:118485. doi:10.1016/j.envres.2024.118485Search in Google Scholar
Di Nisio A, Sabovic I, Valente U, et al. Endocrine Disruption of Androgenic Activity by Perfluoroalkyl Substances: Clinical and Experimental Evidence. J Clin Endocrinol Metab. 2019;104(4):1259–1271. doi:10.1210/jc.2018-01855Search in Google Scholar
Timmermann CAG, Budtz-Jørgensen E, Petersen MS, et al. Shorter duration of breastfeeding at elevated exposures to perfluoroalkyl substances. Reprod Toxicol. 2017;68:164–170. doi:10.1016/j.reprotox.2016.07.010Search in Google Scholar
Rosen EM, Brantsæter AL, Carroll R, et al. Maternal Plasma Concentrations of Per- and Polyfluoroalkyl Substances and Breastfeeding Duration in the Norwegian Mother and Child Cohort. Environ Epidemiol Phila Pa. 2018;2(3):e027. doi:10.1097/EE9.0000000000000027Search in Google Scholar
Mamsen LS, Björvang RD, Mucs D, et al. Concentrations of perfluoroalkyl substances (PFASs) in human embryonic and fetal organs from first, second, and third trimester pregnancies. Environ Int. 2019;124:482–492. doi:10.1016/j.envint.2019.01.010Search in Google Scholar
Varsi K, Torsvik IK, Huber S, Averina M, Brox J, Bjørke-Monsen AL. Impaired gross motor development in infants with higher PFAS concentrations. Environ Res. 2022;204:112392. doi:10.1016/j.envres.2021.112392Search in Google Scholar
Fei C, McLaughlin JK, Tarone RE, Olsen J. Perfluorinated Chemicals and Fetal Growth: A Study within the Danish National Birth Cohort. Environ Health Perspect. 2007;115(11):1677–1682. doi:10.1289/ehp.10506Search in Google Scholar
Zheng T, Kelsey K, Zhu C, et al. Adverse birth outcomes related to concentrations of per- and polyfluoroalkyl substances (PFAS) in maternal blood collected from pregnant women in 1960–1966. Environ Res. 2024;241:117010. doi:10.1016/j.envres.2023.117010Search in Google Scholar
Assessment UENC for E. Birth outcomes in relation to prenatal exposure to per- and polyfluoroalkyl substances and stress in the environmental influences on child health outcomes (echo) program. March 15, 2009. Accessed November 19, 2024. https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/10893257Search in Google Scholar
Lamichhane S, Siljander H, Duberg D, et al. Exposure to per- and polyfluoroalkyl substances associates with an altered lipid composition of breast milk. Environ Int. 2021;157:106855. doi:10.1016/j.envint.2021.106855Search in Google Scholar
Varsi K, Torsvik IK, Huber S, Averina M, Brox J, Bjørke-Monsen AL. Impaired gross motor development in infants with higher PFAS concentrations. Environ Res. 2022;204:112392. doi:10.1016/j.envres.2021.112392Search in Google Scholar
Varsi K, Torsvik IK, Huber S, Averina M, Brox J, Bjørke-Monsen AL. Impaired gross motor development in infants with higher PFAS concentrations. Environ Res. 2022;204:112392. doi:10.1016/j.envres.2021.112392Search in Google Scholar
Frangione B, Birk S, Benzouak T, et al. Exposure to perfluoroalkyl and polyfluoroalkyl substances and pediatric obesity: a systematic review and meta-analysis. Int J Obes 2005. 2024;48(2):131–146. doi:10.1038/s41366-023-01401-6Search in Google Scholar
Geiger SD, Yao P, Vaughn MG, Qian Z. PFAS exposure and overweight/obesity among children in a nationally representative sample. Chemosphere. 2021;268:128852. doi:10.1016/j.chemosphere.2020.128852Search in Google Scholar
Lauritzen HB, Larose TL, Øien T, et al. Prenatal exposure to persistent organic pollutants and child overweight/obesity at 5-year follow-up: a prospective cohort study. Environ Health. 2018;17:9. doi:10.1186/s12940-017-0338-xSearch in Google Scholar
Beck IH, Bilenberg N, Möller S, et al. Association Between Prenatal and Early Postnatal Exposure to Perfluoroalkyl Substances and IQ Score in 7-Year-Old Children From the Odense Child Cohort. Am J Epidemiol. 2023;192(9):1522–1535. doi:10.1093/aje/kwad110Search in Google Scholar
Spratlen MJ, Perera FP, Lederman SA, et al. The association between prenatal exposure to perfluoroalkyl substances and childhood neurodevelopment. Environ Pollut. 2020;263:114444. doi:10.1016/j.envpol.2020.114444Search in Google Scholar
Ernst A, Brix N, Lauridsen LLB, et al. Exposure to Perfluoroalkyl Substances during Fetal Life and Pubertal Development in Boys and Girls from the Danish National Birth Cohort. Environ Health Perspect. 2019;127(1):017004. doi:10.1289/EHP3567Search in Google Scholar
Kristensen SL, Ramlau-Hansen CH, Ernst E, et al. Long-term effects of prenatal exposure to perfluoroalkyl substances on female reproduction. Hum Reprod Oxf Engl. 2013;28(12):3337–3348. doi:10.1093/humrep/det382Search in Google Scholar
Lopez-Espinosa MJ, Fletcher T, Armstrong B, et al. Association of Perfluorooctanoic Acid (PFOA) and Perfluorooctane Sulfonate (PFOS) with age of puberty among children living near a chemical plant. Environ Sci Technol. 2011;45(19):8160–8166. doi:10.1021/es1038694Search in Google Scholar
Marks KJ, Howards PP, Smarr MM, et al. Prenatal exposure to mixtures of persistent endocrine disrupting chemicals and early menarche in a population-based cohort of British girls. Environ Pollut. 2021;276:116705. doi:10.1016/j.envpol.2021.116705Search in Google Scholar
Zahm S, Bonde JP, Chiu WA, et al. Carcinogenicity of perfluorooctanoic acid and perfluorooctanesulfonic acid. Lancet Oncol. 2024;25(1):16–17. doi:10.1016/S1470-2045(23)00622-8Search in Google Scholar
Jones RR, Madrigal JM, Troisi R, et al. Maternal serum concentrations of per- and polyfluoroalkyl substances and childhood acute lymphoblastic leukemia. J Natl Cancer Inst. 2024;116(5):728–736. doi:10.1093/jnci/djad261Search in Google Scholar
Hærvig KK, Petersen KU, Hougaard KS, et al. Maternal Exposure to Per- and Polyfluoroalkyl Substances (PFAS) and Male Reproductive Function in Young Adulthood: Combined Exposure to Seven PFAS. Environ Health Perspect. 2022;130(10):107001. doi:10.1289/EHP10285Search in Google Scholar
Cohn BA, La Merrill MA, Krigbaum NY, et al. In utero exposure to poly− and perfluoroalkyl substances (PFASs) and subsequent breast cancer. Reprod Toxicol. 2020;92:112–119. doi:10.1016/j.reprotox.2019.06.012Search in Google Scholar
Blake BE, Pinney SM, Hines EP, Fenton SE, Ferguson KK. Associations between longitudinal serum perfluoroalkyl substance (PFAS) levels and measures of thyroid hormone, kidney function, and body mass index in the Fernald Community Cohort. Environ Pollut. 2018;242:894–904. doi:10.1016/j.envpol.2018.07.042Search in Google Scholar
Cardenas A, Hauser R, Gold DR, et al. Association of Perfluoroalkyl and Polyfluoroalkyl Substances With Adiposity. JAMA Netw Open. 2018;1(4):e181493. doi:10.1001/jamanetworkopen.2018.1493Search in Google Scholar
Hölzer J, Midasch O, Rauchfuss K, et al. Biomonitoring of Perfluorinated Compounds in Children and Adults Exposed to Perfluorooctanoate-Contaminated Drinking Water. Environ Health Perspect. 2008;116(5):651–657. doi:10.1289/ehp.11064Search in Google Scholar
Ding N, Karvonen-Gutierrez CA, Herman WH, Calafat AM, Mukherjee B, Park SK. Associations of perfluoroalkyl and polyfluoroalkyl substances (PFAS) and PFAS mixtures with adipokines in midlife women. Int J Hyg Environ Health. 2021;235:113777. doi:10.1016/j.ijheh.2021.113777Search in Google Scholar
Wu B, Pan Y, Li Z, et al. Serum per- and polyfluoroalkyl substances and abnormal lipid metabolism: A nationally representative cross-sectional study. Environ Int. 2023;172:107779. doi:10.1016/j.envint.2023.107779Search in Google Scholar
Chen Z, Yang T, Walker DI, et al. Dysregulated lipid and fatty acid metabolism link perfluoroalkyl substances exposure and impaired glucose metabolism in young adults. Environ Int. 2020;145:106091. doi:10.1016/j.envint.2020.106091Search in Google Scholar
Jiang L, Liu Y, Zhou Y, et al. Targeted metabolomics unravels altered phenylalanine levels in piglets receiving total parenteral nutrition. FASEB J Off Publ Fed Am Soc Exp Biol. 2023;37(7):e23014. doi:10.1096/fj.202300261RRSearch in Google Scholar
Rotander A, Ramos MJG, Mueller JF, Toms LM, Hyötyläinen T. Metabolic changes associated with PFAS exposure in firefighters: A pilot study. Sci Total Environ. 2024;953:176004. doi:10.1016/j.scitotenv.2024.176004Search in Google Scholar
Lundin JI, Alexander BH, Olsen GW, Church TR. Ammonium Perfluorooctanoate Production and Occupational Mortality. Epidemiology. 2009;20(6):921. doi:10.1097/EDE.0b013e3181b5f395Search in Google Scholar
Leonard RC, Kreckmann KH, Sakr CJ, Symons JM. Retrospective Cohort Mortality Study of Workers in a Polymer Production Plant Including a Reference Population of Regional Workers. Ann Epidemiol. 2008;18(1):15–22. doi:10.1016/j.annepidem.2007.06.011Search in Google Scholar
Cardenas A, Hivert MF, Gold DR, et al. Associations of Perfluoroalkyl and Polyfluoroalkyl Substances With Incident Diabetes and Microvascular Disease. Diabetes Care. 2019;42(9):1824–1832. doi:10.2337/dc18-2254Search in Google Scholar
Domazet SL, Grøntved A, Timmermann AG, Nielsen F, Jensen TK. Longitudinal Associations of Exposure to Perfluoroalkylated Substances in Childhood and Adolescence and Indicators of Adiposity and Glucose Metabolism 6 and 12 Years Later: The European Youth Heart Study. Diabetes Care. 2016;39(10):1745–1751. doi:10.2337/dc16-0269Search in Google Scholar
Meyer JD, McDiarmid M, Diaz JH, Baker BA, Hieb M, Toxicology ATF on R. Reproductive and Developmental Hazard Management. J Occup Environ Med. 2016;58(3):e94. doi:10.1097/JOM.0000000000000669Search in Google Scholar