State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer CenterGuangzhou, China
Department of Radiation Oncology, Southern Theater Air Force Hospital of the People’s Liberation ArmyGuangzhou, China
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer CenterGuangzhou, China
Guangdong Esophageal Cancer InstituteGuangzhou, China
United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co. LtdGuangzhou, China
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer CenterGuangzhou, China
School of Electronic and Computer Engineering, Peking UniversityShenzhen, China
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer CenterGuangzhou, China
Department of Radiation Oncology, The First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou, China
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer CenterGuangzhou, China
Department of Radiology, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhen, China
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer CenterGuangzhou, China
Department of Radiation Oncology, The First People’s Hospital of FoshanFoshan, China
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer CenterGuangzhou, China
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer CenterGuangzhou, China
Guangdong Esophageal Cancer InstituteGuangzhou, China
United Laboratory of Frontier Radiotherapy Technology of Sun Yat-sen University & Chinese Academy of Sciences Ion Medical Technology Co. LtdGuangzhou, China
This work is licensed under the Creative Commons Attribution 4.0 International License.
Hardcastle N, Tomé WA, Cannon DM, Brouwer CL, Wittendorp PW, Dogan N, et al. A multi-institution evaluation of deformable image registration algorithms for automatic organ delineation in adaptive head and neck radiotherapy. Radiat Oncol 2012; 7: 90. doi: 10.1186/1748-717X-7-90HardcastleNToméWACannonDMBrouwerCLWittendorpPWDoganNA multi-institution evaluation of deformable image registration algorithms for automatic organ delineation in adaptive head and neck radiotherapy. Radiat Oncol2012; 7: 90. doi: 10.1186/1748-717X-7-90Open DOISearch in Google Scholar
Burridge N, Amer A, Marchant T, Sykes J, Stratford J, Henry A, et al. Online adaptive radiotherapy of the bladder: small bowel irradiated-volume reduction. Int J Radiat Oncol Biol Phys 2006; 66: 892-7. doi: 10.1016/j.ijrobp.2006.07.013BurridgeNAmerAMarchantTSykesJStratfordJHenryAOnline adaptive radiotherapy of the bladder: small bowel irradiated-volume reduction. Int J Radiat Oncol Biol Phys2006; 66: 892-7. doi: 10.1016/j.ijrobp.2006.07.013Open DOISearch in Google Scholar
Noel CE, Parikh PJ, Spencer CR, Green OL, Hu Y, Mutic S, et al. Comparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy. Acta Oncol 2015; 54: 1474-82. doi: 10.3109/0284186X.2015.1062541NoelCEParikhPJSpencerCRGreenOLHuYMuticSComparison of onboard low-field magnetic resonance imaging versus onboard computed tomography for anatomy visualization in radiotherapy. Acta Oncol2015; 54: 1474-82. doi: 10.3109/0284186X.2015.1062541Open DOISearch in Google Scholar
Lütgendorf-Caucig C, Fotina I, Stock M, Pötter R, Goldner G, Georg D. Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol 2011; 98: 154-61. doi: 10.1016/j.radonc.2010.11.016Lütgendorf-CaucigCFotinaIStockMPötterRGoldnerGGeorgD.Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. Radiother Oncol2011; 98: 154-61. doi: 10.1016/j.radonc.2010.11.016Open DOISearch in Google Scholar
Hunt A, Hansen VN, Oelfke U, Nill S, Hafeez S. Adaptive radiotherapy enabled by MRI guidance. Clin Oncol (R Coll Radiol) 2018; 30: 711-9. doi: 10.1016/j.clon.2018.08.001HuntAHansenVNOelfkeUNillSHafeezS.Adaptive radiotherapy enabled by MRI guidance. Clin Oncol (R Coll Radiol)2018; 30: 711-9. doi: 10.1016/j.clon.2018.08.001Open DOISearch in Google Scholar
Ahmed M, Schmidt M, Sohaib A, Kong C, Burke K, Richardson C, et al. The value of magnetic resonance imaging in target volume delineation of base of tongue tumours – a study using flexible surface coils. Radiother Oncol 2010; 94: 161-7. doi: 10.1016/j.radonc.2009.12.021AhmedMSchmidtMSohaibAKongCBurkeKRichardsonCThe value of magnetic resonance imaging in target volume delineation of base of tongue tumours – a study using flexible surface coils. Radiother Oncol2010; 94: 161-7. doi: 10.1016/j.radonc.2009.12.021Open DOISearch in Google Scholar
Sander L, Langkilde NC, Holmberg M, Carl J. MRI target delineation may reduce long-term toxicity after prostate radiotherapy. Acta Oncol 2014; 53: 809-14. doi: 10.3109/0284186X.2013.865077SanderLLangkildeNCHolmbergMCarlJ.MRI target delineation may reduce long-term toxicity after prostate radiotherapy. Acta Oncol2014; 53: 809-14. doi: 10.3109/0284186X.2013.865077Open DOISearch in Google Scholar
Tanaka H, Hayashi S, Ohtakara K, Hoshi H, Iida T. Usefulness of CT-MRI fusion in radiotherapy planning for localized prostate cancer. J Radiat Res 2011; 52: 782-8. doi: 10.1269/jrr.11053TanakaHHayashiSOhtakaraKHoshiHIidaT.Usefulness of CT-MRI fusion in radiotherapy planning for localized prostate cancer. J Radiat Res2011; 52: 782-8. doi: 10.1269/jrr.11053Open DOISearch in Google Scholar
Hijab A, Tocco B, Hanson I, Meijer H, Nyborg CJ, Bertelsen AS, et al. MR-guided adaptive radiotherapy for bladder cancer. Front Oncol 2021; 11: 637591. doi: 10.3389/fonc.2021.637591HijabAToccoBHansonIMeijerHNyborgCJBertelsenASMR-guided adaptive radiotherapy for bladder cancer. Front Oncol2021; 11: 637591. doi: 10.3389/fonc.2021.637591Open DOISearch in Google Scholar
Pathmanathan AU, van As NJ, Kerkmeijer LGW, Christodouleas J, Lawton CAF, Vesprini D, et al. Magnetic resonance imaging-guided adaptive radiation therapy: a “Game Changer” for prostate treatment? Int J Radiat Oncol Biol Phys 2018; 100: 361-73. doi: 10.1016/j.ijrobp.2017.10.020PathmanathanAUvan AsNJKerkmeijerLGWChristodouleasJLawtonCAFVespriniDMagnetic resonance imaging-guided adaptive radiation therapy: a “Game Changer” for prostate treatment?Int J Radiat Oncol Biol Phys2018; 100: 361-73. doi: 10.1016/j.ijrobp.2017.10.020Open DOISearch in Google Scholar
Vestergaard A, Hafeez S, Muren LP, Nill S, Høyer M, Hansen VN, et al. The potential of MRI-guided online adaptive re-optimisation in radiotherapy of urinary bladder cancer. Radiother Oncol 2016; 118: 154-9. doi: 10.1016/j.radonc.2015.11.003VestergaardAHafeezSMurenLPNillSHøyerMHansenVNThe potential of MRI-guided online adaptive re-optimisation in radiotherapy of urinary bladder cancer. Radiother Oncol2016; 118: 154-9. doi: 10.1016/j.radonc.2015.11.003Open DOISearch in Google Scholar
Kerkmeijer LGW, Maspero M, Meijer GJ, van der Voort van Zyp JRN, de Boer HCJ, van den Berg CAT. Magnetic resonance imaging only workflow for radiotherapy simulation and planning in prostate cancer. Clin Oncol (R Coll Radiol) 2018; 30: 692-701. doi: 10.1016/j.clon.2018.08.009KerkmeijerLGWMasperoMMeijerGJvan der Voort van ZypJRNde BoerHCJvan den BergCAT.Magnetic resonance imaging only workflow for radiotherapy simulation and planning in prostate cancer. Clin Oncol (R Coll Radiol)2018; 30: 692-701. doi: 10.1016/j.clon.2018.08.009Open DOISearch in Google Scholar
Paulson ES, Crijns SP, Keller BM, Wang J, Schmidt MA, Coutts G, et al. Consensus opinion on MRI simulation for external beam radiation treatment planning. Radiother Oncol 2016; 121: 187-92. doi: 10.1016/j.radonc.2016.09.018PaulsonESCrijnsSPKellerBMWangJSchmidtMACouttsGConsensus opinion on MRI simulation for external beam radiation treatment planning. Radiother Oncol2016; 121: 187-92. doi: 10.1016/j.radonc.2016.09.018Open DOISearch in Google Scholar
Gay HA, Barthold HJ, O’Meara E, Bosch WR, El Naqa I, Al-Lozi R, et al. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas. Int J Radiat Oncol Biol Phys 2012; 83: e353-e62. doi: 10.1016/j.ijrobp.2012.01.023GayHABartholdHJO’MearaEBoschWREl NaqaIAl-LoziRPelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas. Int J Radiat Oncol Biol Phys2012; 83: e353-e62. doi: 10.1016/j.ijrobp.2012.01.023Open DOISearch in Google Scholar
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab N, Hornegger J, Wells W, Frangi A, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. 18th International Conference, Munich, Germany; October 5-9, 2015. Proceedings. Lecture Notes in Computer Science, vol 9351. Springer, Cham. doi: 10.1007/978-3-319-24574-4_28RonnebergerOFischerPBroxT.U-Net: Convolutional Networks for Biomedical Image Segmentation. In: NavabNHorneggerJWellsWFrangiA, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. 18th International Conference, Munich, Germany; October 5-9, 2015. Proceedings. Lecture Notes in Computer Science, vol 9351. Springer, Cham. doi: 10.1007/978-3-319-24574-4_28Open DOISearch in Google Scholar
Kieselmann JP, Kamerling CP, Burgos N, Menten MJ, Fuller CD, Nill S, et al. Geometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region. Phys Med Biol 2018; 63: 145007. doi: 10.1088/1361-6560/aacb65KieselmannJPKamerlingCPBurgosNMentenMJFullerCDNillSGeometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region. Phys Med Biol2018; 63: 145007. doi: 10.1088/1361-6560/aacb65Open DOISearch in Google Scholar
Noel CE, Zhu F, Lee AY, Yanle H, Parikh PJ. Segmentation precision of abdominal anatomy for MRI-based radiotherapy. Med Dosim 2014; 39: 212-7. doi: 10.1016/j.meddos.2014.02.003NoelCEZhuFLeeAYYanleHParikhPJ.Segmentation precision of abdominal anatomy for MRI-based radiotherapy. Med Dosim2014; 39: 212-7. doi: 10.1016/j.meddos.2014.02.003Open DOISearch in Google Scholar
Pekar V, Allaire S, Qazi A, Kim JJ, Jaffray DA. Head and neck auto-segmentation challenge: segmentation of the parotid lands. In: Jang Z, Navab N, Pluim JPW, Viergever MA, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. 13th International Conference, Beijing, China; September 20-24, 2010. Proceedings. Lecture Notes in Computer Science, vol 6362. p. 273-80. Springer. doi: 10.1007/978-3-642-15745-5PekarVAllaireSQaziAKimJJJaffrayDA.Head and neck auto-segmentation challenge: segmentation of the parotid lands. In: JangZNavabNPluimJPWViergeverMA, editors. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2010. 13th International Conference, Beijing, China; September 20-24, 2010. Proceedings. Lecture Notes in Computer Science, vol 6362. p. 273-80. Springer. doi: 10.1007/978-3-642-15745-5Open DOISearch in Google Scholar
Romeo V, Cavaliere C, Imbriaco M, Verde F, Petretta M, Franzese M, et al. Tumor segmentation analysis at different post-contrast time points: A possible source of variability of quantitative DCE-MRI parameters in locally advanced breast cancer. Eur J Radiol 2020; 126: 108907. doi: 10.1016/j.ejrad.2020.108907RomeoVCavaliereCImbriacoMVerdeFPetrettaMFranzeseMTumor segmentation analysis at different post-contrast time points: A possible source of variability of quantitative DCE-MRI parameters in locally advanced breast cancer. Eur J Radiol2020; 126: 108907. doi: 10.1016/j.ejrad.2020.108907Open DOISearch in Google Scholar
O’Connor LM, Dowling JA, Choi JH, Martin J, Warren-Forward H, Richardson H, et al. Validation of an MRI-only planning workflow for definitive pelvic radiotherapy. Radiat Oncol 2022; 17: 55. doi: 10.1186/s13014-022-02023-4O’ConnorLMDowlingJAChoiJHMartinJWarren-ForwardHRichardsonHValidation of an MRI-only planning workflow for definitive pelvic radiotherapy. Radiat Oncol2022; 17: 55. doi: 10.1186/s13014-022-02023-4Open DOISearch in Google Scholar
Tyagi P, Moon CH, Connell M, Ganguly A, Cho KJ, Tarin T, et al. Intravesical contrast-enhanced MRI: a potential tool for bladder cancer surveillance and staging. Curr Oncol 2023; 30: 4632-47. doi: 10.3390/curroncol30050350TyagiPMoonCHConnellMGangulyAChoKJTarinTIntravesical contrast-enhanced MRI: a potential tool for bladder cancer surveillance and staging. Curr Oncol2023; 30: 4632-47. doi: 10.3390/curroncol30050350Open DOISearch in Google Scholar
Zhu QK, Du B, Yan PK, Lu HB, Zhang LP. Shape prior constrained PSO model for bladder wall MRI segmentation. Neurocomputing 2017; 294: 19-28. doi: 10.1016/j.neucom.2017.12.011ZhuQKDuBYanPKLuHBZhangLP.Shape prior constrained PSO model for bladder wall MRI segmentation. Neurocomputing2017; 294: 19-28. doi: 10.1016/j.neucom.2017.12.011Open DOISearch in Google Scholar
Paley MR, Ros PR. MRI of the rectum: non-neoplastic disease. Eur Radiol 1998; 8: 3-8. doi: 10.1007/s003300050328PaleyMRRosPR.MRI of the rectum: non-neoplastic disease. Eur Radiol1998; 8: 3-8. doi: 10.1007/s003300050328Open DOISearch in Google Scholar
Hwee J, Louie AV, Gaede S, Bauman G, D’Souza D, Sexton T, et al. Technology assessment of automated atlas based segmentation in prostate bed contouring. Radiat Oncol 2011; 6: 110. doi: 10.1186/1748-717X-6-110HweeJLouieAVGaedeSBaumanGD’SouzaDSextonTTechnology assessment of automated atlas based segmentation in prostate bed contouring. Radiat Oncol2011; 6: 110. doi: 10.1186/1748-717X-6-110Open DOISearch in Google Scholar
Huang S, Cheng Z, Lai L, Zheng W, He M, Li J, et al. Integrating multiple MRI sequences for pelvic organs segmentation via the attention mechanism. Med Phys 2021; 48: 7930-45. doi: 10.1002/mp.15285HuangSChengZLaiLZhengWHeMLiJIntegrating multiple MRI sequences for pelvic organs segmentation via the attention mechanism. Med Phys2021; 48: 7930-45. doi: 10.1002/mp.15285Open DOISearch in Google Scholar
Chi JW, Brady M, Moore NR, Schnabel JA. Segmentation of the bladder wall using coupled level set methods. Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, Illinois, USA 2011; 1653-6. doi: 10.1109/ISBI.2011.5872721ChiJWBradyMMooreNRSchnabelJA.Segmentation of the bladder wall using coupled level set methods. Proceedings of the 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Chicago, Illinois, USA2011; 1653-6. doi: 10.1109/ISBI.2011.5872721Open DOISearch in Google Scholar