This work is licensed under the Creative Commons Attribution 4.0 International License.
Siegel RL, Miller KD, Wagle NS,Jemal A. Cancer statistics, 2023. CA Cancer J Clin 2023; 73: 17-48. doi: 10.3322/caac.21763SiegelRLMillerKDWagleNSJemalA.Cancer statistics, 2023. CA Cancer J Clin 2023; 73: 17-48. 10.3322/caac.21763Open DOISearch in Google Scholar
Alhashimi RAH, Mirzaei AR, Alsaedy HK. Molecular and clinical analysis of genes involved in gastric cancer. Cell Mol Biomed Rep 2021; 1: 138-46. doi: 10.55705/cmbr.2021.355860.1056AlhashimiRAHMirzaeiARAlsaedyHK.Molecular and clinical analysis of genes involved in gastric cancer. Cell Mol Biomed Rep2021; 1: 138-46. 10.55705/cmbr.2021.355860.1056Open DOISearch in Google Scholar
Keller DS, Berho M, Perez RO, Wexner SD,Chand M, The multidisciplinary management of rectal cancer. Nat Rev Gastroenterol Hepatol 2020; 17: 414-29. doi: 10.1038/s41575-020-0275-yKellerDSBerhoMPerezROWexnerSDChandMThe multidisciplinary management of rectal cancer. Nat Rev Gastroenterol Hepatol2020; 17: 414-29. 10.1038/s41575-020-0275-yOpen DOISearch in Google Scholar
Li X, Mohammadi MR. Combined diagnostic efficacy of red blood cell distribution width (RDW), prealbumin (PA), platelet-to-lymphocyte ratio (PLR), and carcinoembryonic antigen (CEA) as biomarkers in the diagnosis of colorectal cancer. Cell Mol Biomed Rep 2023; 3: 98-106. doi: 10.55705/cmbr.2023.374804.1088LiXMohammadiMR.Combined diagnostic efficacy of red blood cell distribution width (RDW), prealbumin (PA), platelet-to-lymphocyte ratio (PLR), and carcinoembryonic antigen (CEA) as biomarkers in the diagnosis of colorectal cancer. Cell Mol Biomed Rep2023; 3: 98-106. 10.55705/cmbr.2023.374804.1088Open DOISearch in Google Scholar
Dayde D, Tanaka I, Jain R, Tai MC, Taguchi A. Predictive and prognostic molecular biomarkers for response to neoadjuvant chemoradiation in rectal cancer. Int J Mol Sci 2017; 18: 573. doi: 10.3390/ijms18030573DaydeDTanakaIJainRTaiMCTaguchiA.Predictive and prognostic molecular biomarkers for response to neoadjuvant chemoradiation in rectal cancer. Int J Mol Sci2017; 18: 573. 10.3390/ijms18030573Open DOISearch in Google Scholar
Roy S. Membrane-associated RING ubiquitin ligase RNF-121 and advancement of cancer. Cel Mol Biomed Rep 2025; 5: 80-90. doi: 10.55705/cmbr.2025.469983.1276RoyS.Membrane-associated RING ubiquitin ligase RNF-121 and advancement of cancer. Cel Mol Biomed Rep2025; 5: 80-90. 10.55705/cmbr.2025.469983.1276Open DOISearch in Google Scholar
Arina A, Gutiontov SI, Weichselbaum RR. Radiotherapy and immunotherapy for cancer: From “Systemic” to “Multisite”. Clin Cancer Res 2020; 26: 277782. doi: 10.1158/1078-0432.Ccr-19-2034ArinaAGutiontovSIWeichselbaumRR.Radiotherapy and immunotherapy for cancer: From “Systemic” to “Multisite”. Clin Cancer Res2020; 26: 277782. 10.1158/1078-0432.Ccr-19-2034Open DOISearch in Google Scholar
Chalabi M, Fanchi LF, Dijkstra KK, Van den Berg JG, Aalbers AG, Sikorska K, et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat Med 2020; 26: 566-76. doi: 10.1038/s41591-020-0805-8ChalabiMFanchiLFDijkstraKKVan den BergJGAalbersAGSikorskaKNeoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat Med2020; 26: 566-76. 10.1038/s41591-020-0805-8Open DOISearch in Google Scholar
Cercek A, Lumish M, Sinopoli J, Weiss J, Shia J, Lamendola-Essel M, et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N Engl J Med 2022; 386: 2363-76. doi: 10.1056/NEJMoa2201445CercekALumishMSinopoliJWeissJShiaJLamendola-EsselMPD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N Engl J Med2022; 386: 2363-76. 10.1056/NEJMoa2201445Open DOISearch in Google Scholar
Bando H, Tsukada Y, Inamori K, Togashi Y, Koyama S, Kotani D, et al. Preoperative chemoradiotherapy plus nivolumab before surgery in patients with microsatellite stable and microsatellite instability-high locally advanced rectal cancer. Clin Cancer Res 2022; 28: 1136-46. doi: 10.1158/1078-0432. Ccr-21-3213BandoHTsukadaYInamoriKTogashiYKoyamaSKotaniDPreoperative chemoradiotherapy plus nivolumab before surgery in patients with microsatellite stable and microsatellite instability-high locally advanced rectal cancer. Clin Cancer Res2022; 28: 1136-46. 10.1158/1078-0432. Ccr-21-3213Open DOISearch in Google Scholar
Lin Z, Cai M, Zhang P, Li G, Liu T, Li X, et al. Phase II, single-arm trial of preoperative short-course radiotherapy followed by chemotherapy and camrelizumab in locally advanced rectal cancer. J Immunother Cancer 2021; 9: e003554. doi: 10.1136/jitc-2021-003554LinZCaiMZhangPLiGLiuTLiXPhase II, single-arm trial of preoperative short-course radiotherapy followed by chemotherapy and camrelizumab in locally advanced rectal cancer. J Immunother Cancer2021; 9: e003554. 10.1136/jitc-2021-003554Open DOISearch in Google Scholar
Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets - update. Nucleic Acids Res 2013; 41: D991-5. doi: 10.1093/nar/gks1193BarrettTWilhiteSELedouxPEvangelistaCKimIFTomashevskyMNCBI GEO: archive for functional genomics data sets - update. Nucleic Acids Res2013; 41: D991-5. 10.1093/nar/gks1193Open DOISearch in Google Scholar
GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet 2013; 45: 580-5. doi: 10.1038/ng.2653GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet2013; 45: 580-5. 10.1038/ng.2653Open DOISearch in Google Scholar
Bolstad BM, Irizarry RA, Astrand M,Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003; 19: 185-93. doi: 10.1093/bioinformatics/19.2.185BolstadBMIrizarryRAAstrandMSpeedTP.A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics2003; 19: 185-93. 10.1093/bioinformatics/19.2.185Open DOISearch in Google Scholar
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43: e47. doi: 10.1093/nar/gkv007RitchieMEPhipsonBWuDHuYLawCWShiWlimma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res2015; 43: e47. 10.1093/nar/gkv007Open DOISearch in Google Scholar
Wickham H. ggplot2. Elegant graphics for data analysis. New York: Springer-Verlag; 2016.WickhamH.ggplot2. Elegant graphics for data analysis. New York: Springer-Verlag; 2016.Search in Google Scholar
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012; 16: 284-7. doi: 10.1089/omi.2011.0118YuGWangLGHanYHeQY.clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS2012; 16: 284-7. 10.1089/omi.2011.0118Open DOISearch in Google Scholar
Yu G, Gao CH. Package ‘enrichplot’. Visualization of Functional Enrichment Result; 2024. [internet]. [cited 2024 Nov 22]. Available at: https://www. bioconductor.org/packages/devel/bioc/manuals/enrichplot/man/enrich-plot.pdfYuGGaoCH.Package ‘enrichplot’. Visualization of Functional Enrichment Result; 2024. [internet]. [cited 2024 Nov 22]. Available at: https://www.bioconductor.org/packages/devel/bioc/manuals/enrichplot/man/enrich-plot.pdfSearch in Google Scholar
Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res 2023; 51: D638-46. doi: 10.1093/nar/gkac1000SzklarczykDKirschRKoutrouliMNastouKMehryaryFHachilifRThe STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res2023; 51: D638-46. 10.1093/nar/gkac1000Open DOISearch in Google Scholar
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13: 2498-504. doi: 10.1101/gr.1239303ShannonPMarkielAOzierOBaligaNSWangJTRamageDCytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res2003; 13: 2498-504. 10.1101/gr.1239303Open DOISearch in Google Scholar
Chin CH, Chen SH, Wu HH, Ho CW, Ko MT,Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Systems Biol 2014; 8 (Suppl 4): S11. doi: 10.1186/1752-0509-8-s4-s11ChinCHChenSHWuHHHoCWKoMTLinCY.cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Systems Biol2014; 8 (Suppl 4): S11. 10.1186/1752-0509-8-s4-s11Open DOISearch in Google Scholar
Gu Z, Gu L, Eils R, Schlesner M, Brors B. Circlize Implements and enhances circular visualization in R. Bioinformatics 2014; 30: 2811-2. doi: 10.1093/bioinformatics/btu393GuZGuLEilsRSchlesnerMBrorsB.Circlize Implements and enhances circular visualization in R. Bioinformatics2014; 30: 2811-2. 10.1093/bioinformatics/btu393Open DOISearch in Google Scholar
Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 2011; 12: 77. doi: 10.1186/1471-2105-12-77RobinXTurckNHainardATibertiNLisacekFSanchezJCpROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics2011; 12: 77. 10.1186/1471-2105-12-77Open DOISearch in Google Scholar
Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nature Meth 2015; 12: 453-7. doi: 10.1038/nmeth.3337NewmanAMLiuCLGreenMRGentlesAJFengWXuYRobust enumeration of cell subsets from tissue expression profiles. Nature Meth2015; 12: 453-7. 10.1038/nmeth.3337Open DOISearch in Google Scholar
Chandrashekar DS, Karthikeyan SK, Korla PK, Patel H, Shovon AR, Athar M, et al. UALCAN: an update to the integrated cancer data analysis platform. Neoplasia 2022; 25: 18-27. doi: 10.1016/j.neo.2022.01.001ChandrashekarDSKarthikeyanSKKorlaPKPatelHShovonARAtharMUALCAN: an update to the integrated cancer data analysis platform. Neoplasia2022; 25: 18-27. 10.1016/j.neo.2022.01.001Open DOISearch in Google Scholar
Sjöstedt E, Zhong W, Fagerberg L, Karlsson M, Mitsios N, Adori C, et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 2020; 367: eaay5947. doi: 10.1126/science.aay5947SjöstedtEZhongWFagerbergLKarlssonMMitsiosNAdoriCAn atlas of the protein-coding genes in the human, pig, and mouse brain. Science2020; 367: eaay5947. 10.1126/science.aay5947Open DOISearch in Google Scholar
Dekker E, Rex DK. Advances in CRC prevention: screening and surveillance. Gastroenterology 2018; 154: 1970-84. doi: 10.1053/j.gastro.2018.01.069DekkerERexDK.Advances in CRC prevention: screening and surveillance. Gastroenterology2018; 154: 1970-84. 10.1053/j.gastro.2018.01.069Open DOISearch in Google Scholar
Zhao P, Zhen H, Zhao H, Huang Y, Cao B. Identification of hub genes and potential molecular mechanisms related to radiotherapy sensitivity in rectal cancer based on multiple datasets. J Transl Med 2023; 21: 176. doi: 10.1186/s12967-023-04029-2ZhaoPZhenHZhaoHHuangYCaoB.Identification of hub genes and potential molecular mechanisms related to radiotherapy sensitivity in rectal cancer based on multiple datasets. J Transl Med2023; 21: 176. 10.1186/s12967-023-04029-2Open DOISearch in Google Scholar
Afshar S, Leili T, Amini P, Dinu I. Introducing novel key genes and transcription factors associated with rectal cancer response to chemoradiation through co-expression network analysis. Heliyon 2023; 9: e18869. doi: 10.1016/j.heliyon.2023.e18869AfsharSLeiliTAminiPDinuI.Introducing novel key genes and transcription factors associated with rectal cancer response to chemoradiation through co-expression network analysis. Heliyon2023; 9: e18869. 10.1016/j.heliyon.2023.e18869Open DOISearch in Google Scholar
Marinkovic M, Stojanovic-Rundic S, Stanojevic A, Ostojic M, Gavrilovic D, Jankovic R, et al. Exploring novel genetic and hematological predictors of response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Front genet 2023; 14: 1245594. doi: 10.3389/fgene.2023.1245594MarinkovicMStojanovic-RundicSStanojevicAOstojicMGavrilovicDJankovicRExploring novel genetic and hematological predictors of response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Front genet2023; 14: 1245594. 10.3389/fgene.2023.1245594Open DOISearch in Google Scholar
Nordlund P, Reichard P. Ribonucleotide reductases. Annu Rev Biochem 2006; 75: 681-706. doi: 10.1146/annurev.biochem.75.103004.142443NordlundPReichardP.Ribonucleotide reductases. Annu Rev Biochem2006; 75: 681-706. 10.1146/annurev.biochem.75.103004.142443Open DOISearch in Google Scholar
Aye Y, Li M, Long MJ, Weiss RS. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 2015; 34: 2011-21. doi: 10.1038/onc.2014.155AyeYLiMLongMJWeissRS.Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene2015; 34: 2011-21. 10.1038/onc.2014.155Open DOISearch in Google Scholar
Zhou S, Li J, Xu H, Zhang S, Chen X, Chen W, et al. Liposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating micro-RNA expression. Gene 2017; 622: 1-12. doi: 10.1016/j.gene.2017.04.026ZhouSLiJXuHZhangSChenXChenWLiposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating micro-RNA expression. Gene2017; 622: 1-12. 10.1016/j.gene.2017.04.026Open DOISearch in Google Scholar
Itoi T, Sofuni A, Fukushima N, Itokawa F, Tsuchiya T, Kurihara T, et al. Ribonucleotide reductase subunit M2 mRNA expression in pretreatment biopsies obtained from unresectable pancreatic carcinomas. J Gastroenterol 2007; 42: 389-94. doi: 10.1007/s00535-007-2017-0ItoiTSofuniAFukushimaNItokawaFTsuchiyaTKuriharaTRibonucleotide reductase subunit M2 mRNA expression in pretreatment biopsies obtained from unresectable pancreatic carcinomas. J Gastroenterol2007; 42: 389-94. 10.1007/s00535-007-2017-0Open DOISearch in Google Scholar
Huang N, Guo W, Ren K, Li W, Jiang Y, Sun J, et al. LncRNA AFAP1-AS1 su-presses miR-139-5p and promotes cell proliferation and chemotherapy resistance of non-small cell lung cancer by competitively upregulating RRM2. Front Oncol 2019; 9: 1103. doi: 10.3389/fonc.2019.01103HuangNGuoWRenKLiWJiangYSunJLncRNA AFAP1-AS1 su-presses miR-139-5p and promotes cell proliferation and chemotherapy resistance of non-small cell lung cancer by competitively upregulating RRM2. Front Oncol2019; 9: 1103. 10.3389/fonc.2019.01103Open DOISearch in Google Scholar
Lv D, Wu H, Xing R, Shu F, Lei B, Lei C, et al. HnRNP-L mediates bladder cancer progression by inhibiting apoptotic signaling and enhancing MAPK signaling pathways. Oncotarget 2017; 8: 13586-13599. doi: 10.18632/oncotarget.14600LvDWuHXingRShuFLeiBLeiCHnRNP-L mediates bladder cancer progression by inhibiting apoptotic signaling and enhancing MAPK signaling pathways. Oncotarget2017; 8: 13586-13599. 10.18632/oncotarget.14600Open DOISearch in Google Scholar
Yu X, Cao F, Yu Y, Li Y, Zhang J, Xu T, et al. HNRNPL Is identified and validated as a prognostic biomarker associated with microsatellite instability in human gastric cancer. DNA Cell Biol 2021; 40: 1251-60. doi: 10.1089/dna.2021.0165YuXCaoFYuYLiYZhangJXuTHNRNPL Is identified and validated as a prognostic biomarker associated with microsatellite instability in human gastric cancer. DNA Cell Biol2021; 40: 1251-60. 10.1089/dna.2021.0165Open DOISearch in Google Scholar
Zhao Y, Wang Y, Wang Q. HNRNPL affects the proliferation and apoptosis of colorectal cancer cells by regulating PD-L1. Pathol Res Pract 2021; 218: 153320. doi: 10.1016/j.prp.2020.153320ZhaoYWangYWangQ.HNRNPL affects the proliferation and apoptosis of colorectal cancer cells by regulating PD-L1. Pathol Res Pract2021; 218: 153320. 10.1016/j.prp.2020.153320Open DOISearch in Google Scholar
Qiao L, Xie N, Bai Y, Li Y, Shi Y, Wang J, et al. Identification of upregulated HNRNPs associated with poor prognosis in pancreatic cancer. Biomed Res Int 2019; 2019: 5134050. doi: 10.1155/2019/5134050QiaoLXieNBaiYLiYShiYWangJIdentification of upregulated HNRNPs associated with poor prognosis in pancreatic cancer. Biomed Res Int2019; 2019: 5134050. 10.1155/2019/5134050Open DOISearch in Google Scholar
Müller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 2002; 111: 197-208. doi: 10.1016/s0092-8674(02)00976-5MüllerJHartCMFrancisNJVargasMLSenguptaAWildBHistone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell2002; 111: 197-208. 10.1016/s0092-8674(02)00976-5Open DOISearch in Google Scholar
Kodach LL, Jacobs RJ, Heijmans J, van Noesel CJ, Langers AM, Verspaget HW, et al. The role of EZH2 and DNA methylation in the silencing of the tumour suppressor RUNX3 in colorectal cancer. Carcinogenesis 2010; 31: 1567-75. doi: 10.1093/carcin/bgq147KodachLLJacobsRJHeijmansJvan NoeselCJLangersAMVerspagetHWThe role of EZH2 and DNA methylation in the silencing of the tumour suppressor RUNX3 in colorectal cancer. Carcinogenesis2010; 31: 1567-75. 10.1093/carcin/bgq147Open DOISearch in Google Scholar
Bremer SCB, Conradi LC, Mechie NC, Amanzada A, Mavropoulou E, Kitz J, et al. Enhancer of zeste homolog 2 in colorectal cancer development and progression. Digestion 2021; 102: 227-35. doi: 10.1159/000504093BremerSCBConradiLCMechieNCAmanzadaAMavropoulouEKitzJEnhancer of zeste homolog 2 in colorectal cancer development and progression. Digestion2021; 102: 227-35. 10.1159/000504093Open DOISearch in Google Scholar
Rehman AU, Iqbal MA, Sattar RSA, Saikia S, Kashif M, Ali WM, et al. Elevated expression of RUNX3 co-expressing with EZH2 in esophageal cancer patients from India. Cancer Cell Int 2020; 20: 445. doi: 10.1186/s12935-020-01534-yRehmanAUIqbalMASattarRSASaikiaSKashifMAliWMElevated expression of RUNX3 co-expressing with EZH2 in esophageal cancer patients from India. Cancer Cell Int2020; 20: 445. 10.1186/s12935-020-01534-yOpen DOISearch in Google Scholar
Heinze K, Rengsberger M, Gajda M, Jansen L, Osmers L, Oliveira-Ferrer L, et al. CAMK2N1/RUNX3 methylation is an independent prognostic biomarker for progression-free and overall survival of platinum-sensitive epithelial ovarian cancer patients. Clin Epigenetics 2021; 13: 15. doi: 10.1186/s13148-021-01006-8HeinzeKRengsbergerMGajdaMJansenLOsmersLOliveira-FerrerLCAMK2N1/RUNX3 methylation is an independent prognostic biomarker for progression-free and overall survival of platinum-sensitive epithelial ovarian cancer patients. Clin Epigenetics2021; 13: 15. 10.1186/s13148-021-01006-8Open DOISearch in Google Scholar
Wang C, Liu Z, Woo CW, Li Z, Wang L, Wei JS, et al. EZH2 Mediates epigenetic silencing of neuroblastoma suppressor genes CASZ1, CLU, RUNX3, and NGFR. Cancer Res 2012; 72: 315-24. doi: 10.1158/0008-5472.Can-11-0961WangCLiuZWooCWLiZWangLWeiJSEZH2 Mediates epigenetic silencing of neuroblastoma suppressor genes CASZ1, CLU, RUNX3, and NGFR. Cancer Res2012; 72: 315-24. 10.1158/0008-5472.Can-11-0961Open DOISearch in Google Scholar
Wang L, Wu X, Xu W, Gao L, Wang X, Li T. Combined detection of RUNX3 and EZH2 in evaluating efficacy of neoadjuvant therapy and prognostic value of middle and low locally advanced rectal cancer. Front Oncol 2022; 12: 713335. doi: 10.3389/fonc.2022.713335WangLWuXXuWGaoLWangXLiT.Combined detection of RUNX3 and EZH2 in evaluating efficacy of neoadjuvant therapy and prognostic value of middle and low locally advanced rectal cancer. Front Oncol2022; 12: 713335. 10.3389/fonc.2022.713335Open DOISearch in Google Scholar
Alexandrov A, Martzen MR, Phizicky EM. Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA 2002; 8: 1253-66. doi: 10.1017/s1355838202024019AlexandrovAMartzenMRPhizickyEM.Two proteins that form a complex are required for 7-methylguanosine modification of yeast tRNA. RNA2002; 8: 1253-66. 10.1017/s1355838202024019Open DOISearch in Google Scholar
Pandolfini L, Barbieri I, Bannister AJ, Hendrick A, Andrews B, Webster N, et al. METTL1 promotes let-7 microRNA processing via m7G methylation. Mol Cell 2019; 74: 1278-90.e1279. doi: 10.1016/j.molcel.2019.03.040PandolfiniLBarbieriIBannisterAJHendrickAAndrewsBWebsterNMETTL1 promotes let-7 microRNA processing via m7G methylation. Mol Cell2019; 74: 1278-90.e1279. 10.1016/j.molcel.2019.03.040Open DOISearch in Google Scholar
Tian QH, Zhang MF, Zeng JS, Luo RG, Wen Y, Chen J, et al. METTL1 overexpression is correlated with poor prognosis and promotes hepatocellular carcinoma via PTEN. J Mol Med 2019; 97: 1535-45. doi: 10.1007/s00109-019-01830-9TianQHZhangMFZengJSLuoRGWenYChenJMETTL1 overexpression is correlated with poor prognosis and promotes hepatocellular carcinoma via PTEN. J Mol Med2019; 97: 1535-45. 10.1007/s00109-019-01830-9Open DOISearch in Google Scholar
Liu Y, Yang C, Zhao Y, Chi Q, Wang Z, Sun B. Overexpressed methyltransferase-like 1 (METTL1) increased chemosensitivity of colon cancer cells to cisplatin by regulating miR-149-3p/S100A4/p53 axis. Aging 2019; 11: 12328-344. doi: 10.18632/aging.102575LiuYYangCZhaoYChiQWangZSunB.Overexpressed methyltransferase-like 1 (METTL1) increased chemosensitivity of colon cancer cells to cisplatin by regulating miR-149-3p/S100A4/p53 axis. Aging2019; 11: 12328-344. 10.18632/aging.102575Open DOISearch in Google Scholar
Orellana EA, Liu Q, Yankova E, Pirouz M, De Braekeleer E, Zhang W, et al. METTL1-mediated m(7)G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell 2021; 81: 3323-38.e3314. doi: 10.1016/j.molcel.2021.06.031OrellanaEALiuQYankovaEPirouzMDe BraekeleerEZhangWMETTL1-mediated m(7)G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell2021; 81: 3323-38.e3314. 10.1016/j.molcel.2021.06.031Open DOISearch in Google Scholar
Messiaen S, Guiard J, Aigueperse C, Fliniaux I, Tourpin S, Barroca V, et al. Loss of the histone chaperone ASF1B reduces female reproductive capacity in mice. Reproduction 2016; 151: 477-89. doi: 10.1530/rep-15-0327MessiaenSGuiardJAigueperseCFliniauxITourpinSBarrocaVLoss of the histone chaperone ASF1B reduces female reproductive capacity in mice. Reproduction2016; 151: 477-89. 10.1530/rep-15-0327Open DOISearch in Google Scholar
Zhang W, Gao Z, Guan M, Liu N, Meng F, Wang G. ASF1B promotes oncogenesis in lung adenocarcinoma and other cancer types. Front Oncol 2021; 11: 731547. doi: 10.3389/fonc.2021.731547ZhangWGaoZGuanMLiuNMengFWangG.ASF1B promotes oncogenesis in lung adenocarcinoma and other cancer types. Front Oncol2021; 11: 731547. 10.3389/fonc.2021.731547Open DOISearch in Google Scholar
Liu X, Song J, Zhang Y, Wang H, Sun H, Feng X, et al. ASF1B promotes cervical cancer progression through stabilization of CDK9. Cell Death Dis 2020; 11: 705. doi: 10.1038/s41419-020-02872-5LiuXSongJZhangYWangHSunHFengXASF1B promotes cervical cancer progression through stabilization of CDK9. Cell Death Dis2020; 11: 705. 10.1038/s41419-020-02872-5Open DOISearch in Google Scholar
Ouyang X, Lv L, Zhao Y, Zhang F, Hu Q, Li Z, et al. ASF1B serves as a potential therapeutic target by influencing cell cycle and proliferation in hepatocellular carcinoma. Front Oncol 2021; 11: 801506. doi: 10.3389/fonc.2021.801506OuyangXLvLZhaoYZhangFHuQLiZASF1B serves as a potential therapeutic target by influencing cell cycle and proliferation in hepatocellular carcinoma. Front Oncol2021; 11: 801506. 10.3389/fonc.2021.801506Open DOISearch in Google Scholar
Corpet A, De Koning L, Toedling J, Savignoni A, Berger F, Lemaître C, et al. Asf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer. EMBO J 2011; 30: 480-93. doi: 10.1038/emboj.2010.335CorpetADe KoningLToedlingJSavignoniABergerFLemaîtreCAsf1b, the necessary Asf1 isoform for proliferation, is predictive of outcome in breast cancer. EMBO J2011; 30: 480-93. 10.1038/emboj.2010.335Open DOISearch in Google Scholar
Qiu W, Wu X, Shi H, Liu B, Li L, Wu W, et al. ASF1B: A possible prognostic marker, therapeutic target, and predictor of immunotherapy in male thyroid carcinoma. Front Oncol 2022; 12: 678025. doi: 10.3389/fonc.2022.678025QiuWWuXShiHLiuBLiLWuWASF1B: A possible prognostic marker, therapeutic target, and predictor of immunotherapy in male thyroid carcinoma. Front Oncol2022; 12: 678025. 10.3389/fonc.2022.678025Open DOISearch in Google Scholar
Yu GH, Gong XF, Peng YY, Qian J. Anti-silencing function 1B knockdown suppresses the malignant phenotype of colorectal cancer by inactivating the phosphatidylinositol 3-kinase/AKT pathway. World J Gastroint Oncol 2022; 14: 2353-66. doi: 10.4251/wjgo.v14.i12.2353YuGHGongXFPengYYQianJ.Anti-silencing function 1B knockdown suppresses the malignant phenotype of colorectal cancer by inactivating the phosphatidylinositol 3-kinase/AKT pathway. World J Gastroint Oncol2022; 14: 2353-66. 10.4251/wjgo.v14.i12.2353Open DOISearch in Google Scholar
Hu X, Zhu H, Zhang X, He X, Xu X. Comprehensive analysis of pan-cancer reveals potential of ASF1B as a prognostic and immunological biomarker. Cancer Med 2021; 10: 6897-916. doi: 10.1002/cam4.4203HuXZhuHZhangXHeXXuX.Comprehensive analysis of pan-cancer reveals potential of ASF1B as a prognostic and immunological biomarker. Cancer Med2021; 10: 6897-916. 10.1002/cam4.4203Open DOISearch in Google Scholar
Zhang H, Han B, Han X, Zhu Y, Liu H, Wang Z, et al. Comprehensive analysis of splicing factor and alternative splicing event to construct subtypespecific prognosis-predicting models for breast cancer. Front Genet 2021; 12: 736423. doi: 10.3389/fgene.2021.736423ZhangHHanBHanXZhuYLiuHWangZComprehensive analysis of splicing factor and alternative splicing event to construct subtypespecific prognosis-predicting models for breast cancer. Front Genet2021; 12: 736423. 10.3389/fgene.2021.736423Open DOISearch in Google Scholar
Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov LB, Behjati S, et al. Intra-tumour diversification in colorectal cancer at the single-cell level. Nature 2018; 556: 457-62. doi: 10.1038/s41586-018-0024-3RoerinkSFSasakiNLee-SixHYoungMDAlexandrovLBBehjatiSIntra-tumour diversification in colorectal cancer at the single-cell level. Nature2018; 556: 457-62. 10.1038/s41586-018-0024-3Open DOISearch in Google Scholar
Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet 2012; 13: 358-69. doi: 10.1038/nrg3198PritchardCCChengHHTewariM.MicroRNA profiling: approaches and considerations. Nat Rev Genet2012; 13: 358-69. 10.1038/nrg3198Open DOISearch in Google Scholar
Hu JL, He GY, Lan XL, Zeng ZC, Guan J, Ding Y, et al. Inhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogenesis 2018; 7: 16. doi: 10.1038/s41389-018-0028-8HuJLHeGYLanXLZengZCGuanJDingYInhibition of ATG12-mediated autophagy by miR-214 enhances radiosensitivity in colorectal cancer. Oncogenesis2018; 7: 16. 10.1038/s41389-018-0028-8Open DOISearch in Google Scholar