Open Access

Cancer gene therapy goes viral: viral vector platforms come of age

   | Feb 11, 2022

Cite

Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin 2021; 71: 7-33. doi: 10.3322/caac.21654 Siegel RL Miller KD Fuchs HE Jemal A Cancer statistics, 2021 CA Cancer J Clin 2021 71 7 33 10.3322/caac.21654Open DOISearch in Google Scholar

Eurostat. Cancer statistics - statistics explained. [cited 2021 Nov 18]. Available at: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Cancer_statistics#Deaths_from_cancer Eurostat Cancer statistics - statistics explained. [cited 2021 Nov 18] Available at https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Cancer_statistics#Deaths_from_cancerSearch in Google Scholar

Zadnik V, Zagar T, Lokar K, Tomsic S, Konjevic AD, Zakotnik B. Trends in population-based cancer survival in Slovenia. Radiol Oncol 2021; 55: 42-9. doi: 10.2478/raon-2021-0003 Zadnik V Zagar T Lokar K Tomsic S Konjevic AD Zakotnik B Trends in population-based cancer survival in Slovenia Radiol Oncol 2021 55 42 9 10.2478/raon-2021-0003Open DOISearch in Google Scholar

Cross D, Burmester JK. Gene therapy for cancer treatment: past, present and future. Clin Med Res 2006; 4: 218-27. doi: 10.3121/cmr.4.3.218 Cross D Burmester JK Gene therapy for cancer treatment: past, present and future Clin Med Res 2006 4 218 27 10.3121/cmr.4.3.218Open DOISearch in Google Scholar

Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, et al Gene therapy leaves a vicious cycle. Front Oncol 2019; 9: 1-25. doi: 10.3389/fonc.2019.00297 Goswami R Subramanian G Silayeva L Newkirk I Doctor D Chawla K et al Gene therapy leaves a vicious cycle Front Oncol 2019 9 1 25 10.3389/fonc.2019.00297Open DOISearch in Google Scholar

Sheridan C. Gene therapy finds its niche. Nat Biotechnol 2011; 29: 121-8. doi: 10.1038/nbt.1769 Sheridan C Gene therapy finds its niche Nat Biotechnol 2011 29 121 8 10.1038/nbt.1769Open DOISearch in Google Scholar

Kotterman MA, Chalberg TW, Schaffer DV. Viral vectors for gene therapy: translational and clinical outlook. Annu Rev Biomed Eng 2015; 17: 63-89. doi: 10.1146/annurev-bioeng-071813-104938 Kotterman MA Chalberg TW Schaffer DV Viral vectors for gene therapy: translational and clinical outlook Annu Rev Biomed Eng 2015 17 63 89 10.1146/annurev-bioeng-071813-104938Open DOISearch in Google Scholar

Daley J. Gene therapy arrives. Nature 2019; 576: S12-3. doi: 10.1038/d41586-019-03716-9 Daley J Gene therapy arrives Nature 2019 576 S12 3 10.1038/d41586-019-03716-9Open DOISearch in Google Scholar

Sadoff J, Gray G, Vandebosch A, Cárdenas V, Shukarev G, Grinsztejn B, et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N Engl J Med 2021; 384: 2187-201. doi: 10.1056/NEJMoa2101544 Sadoff J Gray G Vandebosch A Cárdenas V Shukarev G Grinsztejn B et al Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19 N Engl J Med 2021 384 2187 201 10.1056/NEJMoa2101544Open DOISearch in Google Scholar

Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021; 397: 99-111. doi: 10.1016/S0140-6736(20)32661-1 Voysey M Clemens SAC Madhi SA Weckx LY Folegatti PM Aley PK et al Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK Lancet 2021 397 99 111 10.1016/S0140-6736(20)32661-1Open DOISearch in Google Scholar

Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med 2018; 20: 1-16. doi: 10.1002/jgm.3015 Ginn SL Amaya AK Alexander IE Edelstein M Abedi MR Gene therapy clinical trials worldwide to 2017: an update J Gene Med 2018 20 1 16 10.1002/jgm.301529575374Open DOISearch in Google Scholar

Dock G. The influence of compliting disease upon leukaemia. Am J Med Sci 1904; 127: 563-92. Dock G The influence of compliting disease upon leukaemia Am J Med Sci 1904 127 563 9210.1097/00000441-190412740-00001Search in Google Scholar

Kelly E, Russell SJ. History of oncolytic viruses: genesis to genetic engineering. Mol Ther 2007; 15: 651-9. doi: 10.1038/sj.mt.6300108 Kelly E Russell SJ History of oncolytic viruses: genesis to genetic engineering Mol Ther 2007 15 651 9 10.1038/sj.mt.630010817299401Open DOISearch in Google Scholar

Miest TS, Cattaneo R. New viruses for cancer therapy: meeting clinical needs. Nat Rev Microbiol 2014; 12: 23-34. doi: 10.1038/nrmicro3140 Miest TS Cattaneo R New viruses for cancer therapy: meeting clinical needs Nat Rev Microbiol 2014 12 23 34 10.1038/nrmicro3140400250324292552Open DOISearch in Google Scholar

Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther 2021; 6: 53. doi: 10.1038/s41392-021-00487-6 Bulcha JT Wang Y Ma H Tai PWL Gao G Viral vector platforms within the gene therapy landscape Signal Transduct Target Ther 2021 6 53 10.1038/s41392-021-00487-6786867633558455Open DOISearch in Google Scholar

Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines. Nat Rev Cancer 2021; 21: 360-78. doi: 10.1038/s41568-021-00346-0 Saxena M van der Burg SH Melief CJM Bhardwaj N Therapeutic cancer vaccines Nat Rev Cancer 2021 21 360 78 10.1038/s41568-021-00346-033907315Open DOISearch in Google Scholar

Wan PKT, Ryan AJ, Seymour LW. Beyond cancer cells: targeting the tumor microenvironment with gene therapy and armed oncolytic virus. Mol Ther 2021; 29: 1668-82. doi: 10.1016/j.ymthe.2021.04.015 Wan PKT Ryan AJ Seymour LW Beyond cancer cells: targeting the tumor microenvironment with gene therapy and armed oncolytic virus Mol Ther 2021 29 1668 82 10.1016/j.ymthe.2021.04.015811663433845199Open DOISearch in Google Scholar

Barrett DM, Singh N, Porter DL, Grupp SA, June CH. Chimeric antigen receptor therapy for cancer. Annu Rev Med 2014; 65: 333-47. doi: 10.1146/annurev-med-060512-150254 Barrett DM Singh N Porter DL Grupp SA June CH Chimeric antigen receptor therapy for cancer Annu Rev Med 2014 65 333 47 10.1146/annurev-med-060512-150254412007724274181Open DOISearch in Google Scholar

Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol 2021; 18: 85-100. doi: 10.1038/s41571-020-0426-7 Myers JA Miller JS Exploring the NK cell platform for cancer immunotherapy Nat Rev Clin Oncol 2021 18 85 100 10.1038/s41571-020-0426-7831698132934330Open DOISearch in Google Scholar

Shaw AR, Suzuki M. Immunology of adenoviral vectors in cancer therapy. Mol Ther Methods Clin Dev 2019; 15: 418-29. doi: 10.1016/j. omtm.2019.11.001 Shaw AR Suzuki M Immunology of adenoviral vectors in cancer therapy Mol Ther Methods Clin Dev 2019 15 418 29 10.1016/j.omtm.2019.11.001690912931890734Open DOISearch in Google Scholar

McConnell MJ, Imperiale MJ. Biology of adenovirus and its use as a vector for gene therapy. Hum Gene Ther 2004; 15: 1022-33. doi: 10.1089/hum.2004.15.1022 McConnell MJ Imperiale MJ Biology of adenovirus and its use as a vector for gene therapy Hum Gene Ther 2004 15 1022 33 10.1089/hum.2004.15.102215610603Open DOISearch in Google Scholar

Wold WSM, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther 2013; 13: 421-33. doi: 10.2174/1566 523213666131125095046 Wold WSM Toth K Adenovirus vectors for gene therapy, vaccination and cancer gene therapy Curr Gene Ther 2013 13 421 33 10.2174/1566523213666131125095046Open DOISearch in Google Scholar

Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther 2005; 16: 1016-27. doi: 10.1089/hum.2005.16.1016 Peng Z Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers Hum Gene Ther 2005 16 1016 27 10.1089/hum.2005.16.1016Open DOISearch in Google Scholar

Wang D, Wang K, Cai Y. An overview of development in gene therapeutics in China. Gene Ther 2020; 27: 338-48. doi: 10.1038/s41434-020-0163-7 Wang D Wang K Cai Y An overview of development in gene therapeutics in China Gene Ther 2020 27 338 48 10.1038/s41434-020-0163-7Open DOISearch in Google Scholar

Westphal M, Ylä-Herttuala S, Martin J, Warnke P, Menei P, Eckland D, et al Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial. Lancet Oncol 2013; 14: 823-33. doi: 10.1016/S1470-2045(13)70274-2 Westphal M Ylä-Herttuala S Martin J Warnke P Menei P Eckland D et al Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial Lancet Oncol 2013 14 823 33 10.1016/S1470-2045(13)70274-2Open DOISearch in Google Scholar

European Medicines Agency. Ark Therapeutics Ltd withdraws its marketing authorisation application for Cerepro (sitimagene ceradenovec). [cited 2021 Dec 21]. Available at: https://www.ema.europa.eu/en/news/ark-therapeutics-ltd-withdraws-its-marketing-authorisation-application-cerepro-sitimagene European Medicines Agency Ark Therapeutics Ltd withdraws its marketing authorisation application for Cerepro (sitimagene ceradenovec). [cited 2021 Dec 21] Available at https://www.ema.europa.eu/en/news/ark-therapeutics-ltd-withdraws-its-marketing-authorisation-application-cerepro-sitimageneSearch in Google Scholar

Kulkarni GS. Nadofaragene firadenovec: a new gold standard for BCG-unresponsive bladder cancer? Lancet Oncol 2021; 22: 8-9. doi: 10.1016/S1470-2045(20)30586-6 Kulkarni GS Nadofaragene firadenovec: a new gold standard for BCG-unresponsive bladder cancer? Lancet Oncol 2021 22 8 9 10.1016/S1470-2045(20)30586-6Open DOISearch in Google Scholar

Boorjian SA, Alemozaffar M, Konety BR, Shore ND, Gomella LG, Kamat AM, et al. Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: a single-arm, open-label, repeat-dose clinical trial. Lancet Oncol 2021; 22: 107-17. doi: 10.1016/S1470-2045(20)30540-4 Boorjian SA Alemozaffar M Konety BR Shore ND Gomella LG Kamat AM et al Intravesical nadofaragene firadenovec gene therapy for BCG-unresponsive non-muscle-invasive bladder cancer: a single-arm, open-label, repeat-dose clinical trial Lancet Oncol 2021 22 107 17 10.1016/S1470-2045(20)30540-4Open DOISearch in Google Scholar

Dicks MD, Spencer AJ, Edwards NJ, Wadell G, Bojang K, Gilbert SC, et al. A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity. PLoS One 2012; 7: e40385. doi: 10.1371/journal.pone.0040385 Dicks MD Spencer AJ Edwards NJ Wadell G Bojang K Gilbert SC et al A novel chimpanzee adenovirus vector with low human seroprevalence: improved systems for vector derivation and comparative immunogenicity PLoS One 2012 7 e40385 10.1371/journal.pone.0040385Open DOISearch in Google Scholar

Mercuri E, Muntoni F, Baranello G, Masson R, Boespflug-Tanguy O, Bruno C, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 2021; 20: 832-41. doi: 10.1016/S1474-4422(21)00251-9 Mercuri E Muntoni F Baranello G Masson R Boespflug-Tanguy O Bruno C et al Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial Lancet Neurol 2021 20 832 41 10.1016/S1474-4422(21)00251-9Open DOISearch in Google Scholar

Cappuccini F, Bryant R, Pollock E, Carter L, Verrill C, Hollidge J, et al. Safety and immunogenicity of novel 5T4 viral vectored vaccination regimens in early stage prostate cancer: a phase I clinical trial. J Immunother Cancer 2020; 8: 1-13. doi: 10.1136/jitc-2020-000928 Cappuccini F Bryant R Pollock E Carter L Verrill C Hollidge J et al Safety and immunogenicity of novel 5T4 viral vectored vaccination regimens in early stage prostate cancer: a phase I clinical trial J Immunother Cancer 2020 8 1 13 10.1136/jitc-2020-000928731977532591433Open DOISearch in Google Scholar

Sato-Dahlman M, LaRocca CJ, Yanagiba C, Yamamoto M. Adenovirus and immunotherapy: advancing cancer treatment by combination. Cancers 2020; 12: 1295. doi: 10.3390/cancers12051295 Sato-Dahlman M LaRocca CJ Yanagiba C Yamamoto M Adenovirus and immunotherapy: advancing cancer treatment by combination Cancers 2020 12 1295 10.3390/cancers12051295728165632455560Open DOISearch in Google Scholar

Lee CS, Bishop ES, Zhang R, Yu X, Farina EM, Yan S, et al Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine. Genes Dis 2017; 4: 43-63. doi: 10.1016/j.gendis.2017.04.001 Lee CS Bishop ES Zhang R Yu X Farina EM Yan S et al Adenovirus-mediated gene delivery: potential applications for gene and cell-based therapies in the new era of personalized medicine Genes Dis 2017 4 43 63 10.1016/j.gendis.2017.04.001Open DOISearch in Google Scholar

Xiao X, Li J, Samulski RJ. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224-32. doi: 10.1128/JVI.72.3.2224-2232.1998 Xiao X Li J Samulski RJ Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus J Virol 1998 72 2224 32 10.1128/JVI.72.3.2224-2232.1998Open DOISearch in Google Scholar

Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 2014; 1: 427-51. doi: 10.1146/annurev-virology-031413-085355 Samulski RJ Muzyczka N AAV-mediated gene therapy for research and therapeutic purposes Annu Rev Virol 2014 1 427 51 10.1146/annurev-virology-031413-085355Open DOISearch in Google Scholar

Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors. Curr Opin Virol 2016; 21: 75-80. doi: 10.1016/j.coviro.2016.08.003 Srivastava A In vivo tissue-tropism of adeno-associated viral vectors Curr Opin Virol 2016 21 75 80 10.1016/j.coviro.2016.08.003Open DOISearch in Google Scholar

Mercuri E, Muntoni F, Baranello G, Masson R, Boespflug-Tanguy O, Bruno C, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol 2021; 20: 832-41. doi: 10.1016/S1474-4422(21)00251-9 Mercuri E Muntoni F Baranello G Masson R Boespflug-Tanguy O Bruno C et al Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial Lancet Neurol 2021 20 832 41 10.1016/S1474-4422(21)00251-9Open DOISearch in Google Scholar

Challis RC, Ravindra Kumar S, Chan KY, Challis C, Beadle K, Jang MJ, et al. Systemic AAV vectors for widespread and targeted gene delivery in rodents. Nat Protoc 2019; 14: 379-414. doi: 10.1038/s41596-018-0097-3 Challis RC Ravindra Kumar S Chan KY Challis C Beadle K Jang MJ et al Systemic AAV vectors for widespread and targeted gene delivery in rodents Nat Protoc 2019 14 379 414 10.1038/s41596-018-0097-330626963Open DOISearch in Google Scholar

Xu X, Chen W, Zhu W, Chen J, Ma B, Ding J, et al. Adeno-associated virus (AAV)-based gene therapy for glioblastoma. Cancer Cell Int 2021; 21: 1-10. doi: 10.1186/s12935-021-01776-4 Xu X Chen W Zhu W Chen J Ma B Ding J et al Adeno-associated virus (AAV)-based gene therapy for glioblastoma Cancer Cell Int 2021 21 1 10 10.1186/s12935-021-01776-4783618433499886Open DOISearch in Google Scholar

Santiago-Ortiz JL, Schaffer DV. Adeno-associated virus (AAV) vectors in cancer gene therapy. J Control Release 2016; 240: 287-301. doi: 10.1016/j. jconrel.2016.01.001 Santiago-Ortiz JL Schaffer DV Adeno-associated virus (AAV) vectors in cancer gene therapy J Control Release 2016 240 287 301 10.1016/j.jconrel.2016.01.001494032926796040Open DOISearch in Google Scholar

Hacker UT, Bentler M, Kaniowska D, Morgan M, Büning H. Towards clinical implementation of adeno-associated virus (AAV) vectors for cancer gene therapy: current status and future perspectives. Cancers 2020; 12: 1-30. doi: 10.3390/cancers12071889 Hacker UT Bentler M Kaniowska D Morgan M Büning H Towards clinical implementation of adeno-associated virus (AAV) vectors for cancer gene therapy: current status and future perspectives Cancers 2020 12 1 30 10.3390/cancers12071889740917432674264Open DOISearch in Google Scholar

Münch RC, Janicki H, Völker I, Rasbach A, Hallek M, Büning H, et al. Displaying high-affinity ligands on adeno-associated viral vectors enables tumor cell-specific and safe gene transfer. Mol Ther 2013; 21: 109-18. doi: 10.1038/mt.2012.186 Münch RC Janicki H Völker I Rasbach A Hallek M Büning H et al Displaying high-affinity ligands on adeno-associated viral vectors enables tumor cell-specific and safe gene transfer Mol Ther 2013 21 109 18 10.1038/mt.2012.186353830722968478Open DOISearch in Google Scholar

Reul J, Frisch J, Engeland CE, Thalheimer FB, Hartmann J, Ungerechts G, et al Tumor-specific delivery of immune checkpoint inhibitors by engineered AAV vectors. Front Oncol 2019; 9: 52. doi: 10.3389/fonc.2019.00052 Reul J Frisch J Engeland CE Thalheimer FB Hartmann J Ungerechts G et al Tumor-specific delivery of immune checkpoint inhibitors by engineered AAV vectors Front Oncol 2019 9 52 10.3389/fonc.2019.00052638273830838171Open DOISearch in Google Scholar

Münch RC, Muth A, Muik A, Friedel T, Schmatz J, Dreier B, et al Off-target-free gene delivery by affinity-purified receptor-targeted viral vectors. Nat Commun 2015; 6: 6246. doi: 10.1038/ncomms7246 Münch RC Muth A Muik A Friedel T Schmatz J Dreier B et al Off-target-free gene delivery by affinity-purified receptor-targeted viral vectors Nat Commun 2015 6 6246 10.1038/ncomms724625665714Open DOISearch in Google Scholar

MacLeod DT, Antony J, Martin AJ, Moser RJ, Hekele A, Wetzel KJ, et al Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells. Mol Ther 2017; 25: 949-61. doi: 10.1016/j.ymthe.2017.02.005 MacLeod DT Antony J Martin AJ Moser RJ Hekele A Wetzel KJ et al Integration of a CD19 CAR into the TCR alpha chain locus streamlines production of allogeneic gene-edited CAR T cells Mol Ther 2017 25 949 61 10.1016/j.ymthe.2017.02.005538362928237835Open DOISearch in Google Scholar

Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJC, Hamieh M, Cunanan KM, et al Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 2017; 543: 113-7. doi: 10.1038/nature21405 Eyquem J Mansilla-Soto J Giavridis T van der Stegen SJC Hamieh M Cunanan KM et al Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection Nature 2017 543 113 7 10.1038/nature21405555861428225754Open DOISearch in Google Scholar

Nawaz W, Huang B, Xu S, Li Y, Zhu L, Yiqiao H, et al AAV-mediated in vivo CAR gene therapy for targeting human T-cell leukemia. Blood Cancer J 2021; 11: 119. doi: 10.1038/s41408-021-00508-1 Nawaz W Huang B Xu S Li Y Zhu L Yiqiao H et al AAV-mediated in vivo CAR gene therapy for targeting human T-cell leukemia Blood Cancer J 2021 11 119 10.1038/s41408-021-00508-1822234734162832Open DOISearch in Google Scholar

Wang D, Zhang F, Gao G. CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors. Cell 2020; 181: 136-50. doi: 10.1016/j.cell.2020.03.023 Wang D Zhang F Gao G CRISPR-based therapeutic genome editing: strategies and in vivo delivery by AAV vectors Cell 2020 181 136 50 10.1016/j.cell.2020.03.023723662132243786Open DOISearch in Google Scholar

Ibraheim R, Tai PWL, Mir A, Javeed N, Wang J, Rodríguez TC, et al. Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo. Nat Commun 2021; 12: 6267. doi: 10.1038/s41467-021-26518-y Ibraheim R Tai PWL Mir A Javeed N Wang J Rodríguez TC et al Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo Nat Commun 2021 12 6267 10.1038/s41467-021-26518-y856086234725353Open DOISearch in Google Scholar

Zhao X, Liu L, Lang J, Cheng K, Wang Y, Li X, et al. A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment. Cancer Lett 2018; 431: 171-81. doi: 10.1016/j. canlet.2018.05.042 Zhao X Liu L Lang J Cheng K Wang Y Li X et al A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment Cancer Lett 2018 431 171 81 10.1016/j.canlet.2018.05.04229870774Open DOISearch in Google Scholar

Calcedo R, Vandenberghe LH, Gao G, Lin J, Wilson JM. Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses. J Infect Dis 2009; 199: 381-90. doi: 10.1086/595830 Calcedo R Vandenberghe LH Gao G Lin J Wilson JM Worldwide epidemiology of neutralizing antibodies to adeno-associated viruses J Infect Dis 2009 199 381 90 10.1086/59583019133809Open DOISearch in Google Scholar

Venditti CP. Safety questions for AAV gene therapy. Nat Biotechnol 2021; 39: 24-6. doi: 10.1038/s41587-020-00756-9 Venditti CP Safety questions for AAV gene therapy Nat Biotechnol 2021 39 24 6 10.1038/s41587-020-00756-933199877Open DOISearch in Google Scholar

Shirley JL, de Jong YP, Terhorst C, Herzog RW. Immune responses to viral gene therapy vectors. Mol Ther 2020; 28: 709-22. doi: 10.1016/j. ymthe.2020.01.001 Shirley JL de Jong YP Terhorst C Herzog RW Immune responses to viral gene therapy vectors Mol Ther 2020 28 709 22 10.1016/j.ymthe.2020.01.001705471431968213Open DOISearch in Google Scholar

Naldini L, Blömer U, Gallay P, Ory D, Mulligan R, Gage FH, et al In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263-7. doi: 10.1126/science.272.5259.263 Naldini L Blömer U Gallay P Ory D Mulligan R Gage FH et al In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector Science 1996 272 263 7 10.1126/science.272.5259.2638602510Open DOISearch in Google Scholar

Cockrell AS, Kafri T. Gene delivery by lentivirus vectors. Mol Biotechnol 2007; 36: 184-204. doi: 10.1007/s12033-007-0010-8 Cockrell AS Kafri T Gene delivery by lentivirus vectors Mol Biotechnol 2007 36 184 204 10.1007/s12033-007-0010-817873406Open DOISearch in Google Scholar

Milone MC, O’Doherty U. Clinical use of lentiviral vectors. Leukemia 2018; 32: 1529-41. doi: 10.1038/s41375-018-0106-0 Milone MC O’Doherty U Clinical use of lentiviral vectors Leukemia 2018 32 1529 41 10.1038/s41375-018-0106-0603515429654266Open DOISearch in Google Scholar

Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, et al A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463-71. doi: 10.1128/jvi.72.11.8463-8471.1998 Dull T Zufferey R Kelly M Mandel RJ Nguyen M Trono D et al A third-generation lentivirus vector with a conditional packaging system J Virol 1998 72 8463 71 10.1128/jvi.72.11.8463-8471.19981102549765382Open DOISearch in Google Scholar

Trono D. Lentiviral vectors: turning a deadly foe into a therapeutic agent. Gene Ther 2000; 7: 20-3. doi: 10.1038/sj.gt.3301105 Trono D Lentiviral vectors: turning a deadly foe into a therapeutic agent Gene Ther 2000 7 20 3 10.1038/sj.gt.330110510680011Open DOISearch in Google Scholar

Yáñez-Muñoz RJ, Balaggan KS, MacNeil A, Howe SJ, Schmidt M, Smith AJ, et al. Effective gene therapy with nonintegrating lentiviral vectors. Nat Med 2006; 12: 348-53. doi: 10.1038/nm1365 Yáñez-Muñoz RJ Balaggan KS MacNeil A Howe SJ Schmidt M Smith AJ et al Effective gene therapy with nonintegrating lentiviral vectors Nat Med 2006 12 348 53 10.1038/nm136516491086Open DOISearch in Google Scholar

Philippe S, Sarkis C, Barkats M, Mammeri H, Ladroue C, Petit C, et al Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and vivo. Proc Natl Acad Sci U S A 2006; 103: 17684-9. doi: 10.1073/pnas.0606197103 Philippe S Sarkis C Barkats M Mammeri H Ladroue C Petit C et al Lentiviral vectors with a defective integrase allow efficient and sustained transgene expression in vitro and vivo Proc Natl Acad Sci U S A 2006 103 17684 9 10.1073/pnas.0606197103169380717095605Open DOISearch in Google Scholar

Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, et al CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5: 177ra38. doi: 10.1126/scitranslmed.3005930 Brentjens RJ Davila ML Riviere I Park J Wang X Cowell LG et al CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia Sci Transl Med 2013 5 177ra38 10.1126/scitranslmed.3005930374255123515080Open DOISearch in Google Scholar

Vairy S, Garcia JL, Teira P, Bittencourt H. CTL019 (Tisagenlecleucel): CAR-T therapy for relapsed and refractory B-cell acute lymphoblastic leukemia. Drug Des Devel Ther 2018; 12: 3885-98. doi: 10.2147/DDDT.S138765 Vairy S Garcia JL Teira P Bittencourt H CTL019 (Tisagenlecleucel): CAR-T therapy for relapsed and refractory B-cell acute lymphoblastic leukemia Drug Des Devel Ther 2018 12 3885 98 10.2147/DDDT.S138765623714330518999Open DOISearch in Google Scholar

Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev 2017; 4: 92-101. doi: 10.1016/j. omtm.2016.12.006 Levine BL Miskin J Wonnacott K Keir C Global manufacturing of CAR T cell therapy Mol Ther Methods Clin Dev 2017 4 92 101 10.1016/j.omtm.2016.12.006536329128344995Open DOISearch in Google Scholar

Levine BL. Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells. Cancer Gene Ther 2015; 22: 79-84. doi: 10.1038/cgt.2015.5 Levine BL Performance-enhancing drugs: design and production of redirected chimeric antigen receptor (CAR) T cells Cancer Gene Ther 2015 22 79 84 10.1038/cgt.2015.525675873Open DOISearch in Google Scholar

Somaiah N, Block MS, Kim JW, Shapiro GI, Do KT, Hwu P, et al First-in-class, first-in-human study evaluating LV305, a dendritic-cell tropic lentiviral vector, in sarcoma and other solid tumors expressing NY-ESO-1. Clin Cancer Res 2019; 25: 5808-17. doi: 10.1158/1078-0432.CCR-19-1025 Somaiah N Block MS Kim JW Shapiro GI Do KT Hwu P et al First-in-class, first-in-human study evaluating LV305, a dendritic-cell tropic lentiviral vector, in sarcoma and other solid tumors expressing NY-ESO-1 Clin Cancer Res 2019 25 5808 17 10.1158/1078-0432.CCR-19-102531227504Open DOISearch in Google Scholar

Kochenderfer JN, Feldman SA, Zhao Y, Xu H, Black MA, Morgan RA, et al Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J Immunother 2009; 32: 689-702. doi: 10.1097/CJI.0b013e3181ac6138 Kochenderfer JN Feldman SA Zhao Y Xu H Black MA Morgan RA et al Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor J Immunother 2009 32 689 702 10.1097/CJI.0b013e3181ac6138274730219561539Open DOISearch in Google Scholar

Ostertag D, Amundson KK, Lopez Espinoza F, Martin B, Buckley T, Galvão da Silva AP, et al. Brain tumor eradication and prolonged survival from in-tratumoral conversion of 5-fluorocytosine to 5-fluorouracil using a nonlytic retroviral replicating vector. Neuro Oncol 2012; 14: 145-59. doi: 10.1093/neuonc/nor199 Ostertag D Amundson KK Lopez Espinoza F Martin B Buckley T Galvão da Silva AP et al Brain tumor eradication and prolonged survival from in-tratumoral conversion of 5-fluorocytosine to 5-fluorouracil using a nonlytic retroviral replicating vector Neuro Oncol 2012 14 145 59 10.1093/neuonc/nor199326638422070930Open DOISearch in Google Scholar

Cloughesy TF, Petrecca K, Walbert T, Butowski N, Salacz M, Perry J, et al. Effect of vocimagene amiretrorepvec in combination with Flucytosine vs standard of care on survival following tumor resection in patients with recurrent high-grade glioma: a randomized clinical trial. JAMA Oncol 2020; 6: 1939-46. doi: 10.1001/jamaoncol.2020.3161 Cloughesy TF Petrecca K Walbert T Butowski N Salacz M Perry J et al Effect of vocimagene amiretrorepvec in combination with Flucytosine vs standard of care on survival following tumor resection in patients with recurrent high-grade glioma: a randomized clinical trial JAMA Oncol 2020 6 1939 46 10.1001/jamaoncol.2020.3161759668533119048Open DOISearch in Google Scholar

Albinger N, Hartmann J, Ullrich E. Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther 2021; 28: 513-27. doi: 10.1038/s41434-021-00246-w Albinger N Hartmann J Ullrich E Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany Gene Ther 2021 28 513 27 10.1038/s41434-021-00246-w845532233753909Open DOISearch in Google Scholar

Pikor LA, Bell JC, Diallo JS. Oncolytic viruses: Exploiting cancer’s deal with the devil. Trends in Cancer 2015; 1: 266-77. doi: 10.1016/j.trecan.2015.10.004 Pikor LA Bell JC Diallo JS Oncolytic viruses: Exploiting cancer’s deal with the devil Trends in Cancer 2015 1 266 77 10.1016/j.trecan.2015.10.00428741515Open DOISearch in Google Scholar

Twumasi-Boateng K, Pettigrew JL, Kwok YYE, Bell JC, Nelson BH. Oncolytic viruses as engineering platforms for combination immunotherapy. Nat Rev Cancer 2018; 18: 419-32. doi: 10.1038/s41568-018-0009-4 Twumasi-Boateng K Pettigrew JL Kwok YYE Bell JC Nelson BH Oncolytic viruses as engineering platforms for combination immunotherapy Nat Rev Cancer 2018 18 419 32 10.1038/s41568-018-0009-429695749Open DOISearch in Google Scholar

Russell SJ, Peng KW. Oncolytic virotherapy: a contest between apples and oranges. Mol Ther 2017; 25: 1107-16. doi: 10.1016/j.ymthe.2017.03.026 Russell SJ Peng KW Oncolytic virotherapy: a contest between apples and oranges Mol Ther 2017 25 1107 16 10.1016/j.ymthe.2017.03.026541784528392162Open DOISearch in Google Scholar

Harrington K, Freeman DJ, Kelly B, Harper J, Soria JC. Optimizing oncolytic virotherapy in cancer treatment. Nat Rev Drug Discov 2019; 18: 689-706. doi: 10.1038/s41573-019-0029-0 Harrington K Freeman DJ Kelly B Harper J Soria JC Optimizing oncolytic virotherapy in cancer treatment Nat Rev Drug Discov 2019 18 689 706 10.1038/s41573-019-0029-031292532Open DOISearch in Google Scholar

Lawler SE, Speranza MC, Cho CF, Chiocca EA. Oncolytic viruses in cancer treatment: a review. JAMA Oncol 2017; 3: 841-9. doi: 10.1001/jamaon-col.2016.2064 Lawler SE Speranza MC Cho CF Chiocca EA Oncolytic viruses in cancer treatment: a review JAMA Oncol 2017 3 841 9 10.1001/jamaon-col.2016.2064Open DOISearch in Google Scholar

Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nat Rev Cancer 2014; 14: 559-67. doi: 10.1038/nrc3770 Lichty BD Breitbach CJ Stojdl DF Bell JC Going viral with cancer immunotherapy Nat Rev Cancer 2014 14 559 67 10.1038/nrc377024990523Open DOISearch in Google Scholar

Ylösmäki E, Malorzo C, Capasso C, Honkasalo O, Fusciello M, Martins B, et al. Personalized cancer vaccine platform for clinically relevant oncolytic enveloped viruses. Mol Ther 2018; 26: 2315-25. doi: 10.1016/j. ymthe.2018.06.008 Ylösmäki E Malorzo C Capasso C Honkasalo O Fusciello M Martins B et al Personalized cancer vaccine platform for clinically relevant oncolytic enveloped viruses Mol Ther 2018 26 2315 25 10.1016/j.ymthe.2018.06.008612750030005865Open DOISearch in Google Scholar

Shemesh CS, Hsu JC, Hosseini I, Shen BQ, Rotte A, Twomey P, et al. Personalized cancer vaccines: Clinical landscape, challenges, and opportunities. Mol Ther 2021; 29: 555-70. doi: 10.1016/j.ymthe.2020.09.038 Shemesh CS Hsu JC Hosseini I Shen BQ Rotte A Twomey P et al Personalized cancer vaccines: Clinical landscape, challenges, and opportunities Mol Ther 2021 29 555 70 10.1016/j.ymthe.2020.09.038785428233038322Open DOISearch in Google Scholar

Ries S, Korn WM. ONYX-015: mechanisms of action and clinical potential of a replication-selective adenovirus. Br J Cancer 2002; 86: 5-11. doi: 10.1038/sj.bjc.6600006 Ries S Korn WM ONYX-015: mechanisms of action and clinical potential of a replication-selective adenovirus Br J Cancer 2002 86 5 11 10.1038/sj.bjc.6600006274652811857003Open DOISearch in Google Scholar

Liang M. Oncorine, the world first oncolytic virus medicine and its update in China. Curr Cancer Drug Targets 2018; 18: 171-6. doi: 10.2174/1568009 618666171129221503 Liang M Oncorine, the world first oncolytic virus medicine and its update in China Curr Cancer Drug Targets 2018 18 171 6 10.2174/156800961866617112922150329189159Open DOISearch in Google Scholar

Zheng M, Huang J, Tong A, Yang H. Oncolytic viruses for cancer therapy: barriers and recent advances. Mol Ther - Oncolytics 2019; 15: 234-47. doi: 10.1016/j.omto.2019.10.007 Zheng M Huang J Tong A Yang H Oncolytic viruses for cancer therapy: barriers and recent advances Mol Ther - Oncolytics 2019 15 234 47 10.1016/j.omto.2019.10.007691194331872046Open DOISearch in Google Scholar

Shen Y, Nemunaitis J. Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Ther 2006; 13: 975-92. doi: 10.1038/sj.cgt.7700946 Shen Y Nemunaitis J Herpes simplex virus 1 (HSV-1) for cancer treatment Cancer Gene Ther 2006 13 975 92 10.1038/sj.cgt.770094616604059Open DOISearch in Google Scholar

Andtbacka RHI, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 2015; 33: 2780-8. doi: 10.1200/JCO.2014.58.3377 Andtbacka RHI Kaufman HL Collichio F Amatruda T Senzer N Chesney J et al Talimogene laherparepvec improves durable response rate in patients with advanced melanoma J Clin Oncol 2015 33 2780 8 10.1200/JCO.2014.58.337726014293Open DOISearch in Google Scholar

Ramelyte E, Tastanova A, Balázs Z, Ignatova D, Turko P, Menzel U, et al Oncolytic virotherapy-mediated anti-tumor response: a single-cell perspective. Cancer Cell 2021; 39: 394-406.e4. doi: 10.1016/j.ccell.2020.12.022 Ramelyte E Tastanova A Balázs Z Ignatova D Turko P Menzel U et al Oncolytic virotherapy-mediated anti-tumor response: a single-cell perspective Cancer Cell 2021 39 394 406e4 10.1016/j.ccell.2020.12.02233482123Open DOISearch in Google Scholar

Kaufman HL, Maciorowski D. Advancing oncolytic virus therapy by understanding the biology. Nat Rev Clin Oncol 2021; 18: 197-8. doi: 10.1038/s41571-021-00490-4 Kaufman HL Maciorowski D Advancing oncolytic virus therapy by understanding the biology Nat Rev Clin Oncol 2021 18 197 8 10.1038/s41571-021-00490-433686265Open DOISearch in Google Scholar

Haitz K, Khosravi H, Lin JY, Menge T, Nambudiri VE. Review of talimogene laherparepvec: a first-in-class oncolytic viral treatment of advanced melanoma. J Am Acad Dermatol 2020; 83: 189-96. doi: 10.1016/j. jaad.2020.01.039 Haitz K Khosravi H Lin JY Menge T Nambudiri VE Review of talimogene laherparepvec: a first-in-class oncolytic viral treatment of advanced melanoma J Am Acad Dermatol 2020 83 189 96 10.1016/j.jaad.2020.01.03932004650Open DOISearch in Google Scholar

Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, et al Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 2017; 170: 1109-1119.e10. doi: 10.1016/j.cell.2017.08.027 Ribas A Dummer R Puzanov I VanderWalde A Andtbacka RHI Michielin O et al Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy Cell 2017 170 1109 1119e10 10.1016/j.cell.2017.08.027803439228886381Open DOISearch in Google Scholar

Jahan N, Ghouse SM, Martuza RL, Rabkin SD. In situ cancer vaccination and immunovirotherapy using oncolytic HSV. Viruses 2021; 13: 1-27. doi: 10.3390/v13091740 Jahan N Ghouse SM Martuza RL Rabkin SD In situ cancer vaccination and immunovirotherapy using oncolytic HSV Viruses 2021 13 1 27 10.3390/v13091740847304534578321Open DOISearch in Google Scholar

Todo T, Martuza RL, Rabkin SD, Johnson PA. Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing. Proc Natl Acad Sci U S A 2001; 98: 6396-401. doi: 10.1073/pnas.101136398 Todo T Martuza RL Rabkin SD Johnson PA Oncolytic herpes simplex virus vector with enhanced MHC class I presentation and tumor cell killing Proc Natl Acad Sci U S A 2001 98 6396 401 10.1073/pnas.1011363983347911353831Open DOISearch in Google Scholar

Parato KA, Breitbach CJ, Le Boeuf F, Wang J, Storbeck C, Ilkow C, et al. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol Ther 2012; 20: 749-58. doi: 10.1038/mt.2011.276 Parato KA Breitbach CJ Le Boeuf F Wang J Storbeck C Ilkow C et al The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers Mol Ther 2012 20 749 58 10.1038/mt.2011.276332159422186794Open DOISearch in Google Scholar

Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, et al. Vaccinia virus-mediated cancer immunotherapy: Cancer vaccines and oncolytics. J Immunother Cancer 2019; 7: 1-21. doi: 10.1186/s40425-018-0495-7 Guo ZS Lu B Guo Z Giehl E Feist M Dai E et al Vaccinia virus-mediated cancer immunotherapy: Cancer vaccines and oncolytics J Immunother Cancer 2019 7 1 21 10.1186/s40425-018-0495-7632581930626434Open DOISearch in Google Scholar

Heo J, Reid T, Ruo L, Breitbach CJ, Rose S, Bloomston M, et al. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med 2013; 19: 329-36. doi: 10.1038/nm.3089 Heo J Reid T Ruo L Breitbach CJ Rose S Bloomston M et al Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer Nat Med 2013 19 329 36 10.1038/nm.3089426854323396206Open DOISearch in Google Scholar

Foerster F, Galle PR. The current landscape of clinical trials for systemic treatment of HCC. Cancers 2021; 13: 1962. doi: 10.3390/cancers13081962 Foerster F Galle PR The current landscape of clinical trials for systemic treatment of HCC Cancers 2021 13 1962 10.3390/cancers13081962807347133921731Open DOISearch in Google Scholar

Gregg JR, Thompson TC. Considering the potential for gene-based therapy in prostate cancer. Nat Rev Urol 2021; 18: 170-84. doi: 10.1038/s41585-021-00431-x Gregg JR Thompson TC Considering the potential for gene-based therapy in prostate cancer Nat Rev Urol 2021 18 170 84 10.1038/s41585-021-00431-x33637962Open DOISearch in Google Scholar

Gulley JL, Borre M, Vogelzang NJ, Ng S, Agarwal N, Parker CC, et al. Phase III Trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer. J Clin Oncol 2019; 37: 1051-61. doi: 10.1200/JCO.18.02031 Gulley JL Borre M Vogelzang NJ Ng S Agarwal N Parker CC et al Phase III Trial of PROSTVAC in asymptomatic or minimally symptomatic metastatic castration-resistant prostate cancer J Clin Oncol 2019 37 1051 61 10.1200/JCO.18.02031649436030817251Open DOISearch in Google Scholar

Madan RA, Arlen PM, Mohebtash M, Hodge JW, Gulley JL. Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer. Expert Opin Investig Drugs 2009; 18: 1001-11. doi: 10.1517/13543780902997928 Madan RA Arlen PM Mohebtash M Hodge JW Gulley JL Prostvac-VF: a vector-based vaccine targeting PSA in prostate cancer Expert Opin Investig Drugs 2009 18 1001 11 10.1517/13543780902997928344927619548854Open DOISearch in Google Scholar

Shi T, Song X, Wang Y, Liu F, Wei J. Combining oncolytic viruses with cancer immunotherapy: establishing a new generation of cancer treatment. Front Immunol 2020; 11: 1-13. doi: 10.3389/fimmu.2020.00683 Shi T Song X Wang Y Liu F Wei J Combining oncolytic viruses with cancer immunotherapy: establishing a new generation of cancer treatment Front Immunol 2020 11 1 13 10.3389/fimmu.2020.00683719876032411132Open DOISearch in Google Scholar

Moleirinho MG, Silva RJS, Alves PM, Carrondo MJT, Peixoto C. Current challenges in biotherapeutic particles manufacturing. Expert Opin Biol Ther 2019; 20: 451-65. doi: 10.1080/14712598.2020.1693541 Moleirinho MG Silva RJS Alves PM Carrondo MJT Peixoto C Current challenges in biotherapeutic particles manufacturing Expert Opin Biol Ther 2019 20 451 65 10.1080/14712598.2020.169354131773998Open DOISearch in Google Scholar

Ungerechts G, Bossow S, Leuchs B, Holm PS, Rommelaere J, Coffey M, et al. Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses. Mol Ther - Methods Clin Dev 2016; 3: 16018. doi: 10.1038/mtm.2016.18 Ungerechts G Bossow S Leuchs B Holm PS Rommelaere J Coffey M et al Moving oncolytic viruses into the clinic: clinical-grade production, purification, and characterization of diverse oncolytic viruses Mol Ther - Methods Clin Dev 2016 3 16018 10.1038/mtm.2016.18482264727088104Open DOISearch in Google Scholar

Ghosh S, Brown AM, Jenkins C, Campbell K. Viral vector systems for gene therapy: a comprehensive literature review of progress and biosafety challenges. Appl Biosaf 2020; 25: 7-18. doi: 10.1177/1535676019899502 Ghosh S Brown AM Jenkins C Campbell K Viral vector systems for gene therapy: a comprehensive literature review of progress and biosafety challenges Appl Biosaf 2020 25 7 18 10.1177/1535676019899502Open DOISearch in Google Scholar

Merten OW, Schweizer M, Chahal P, Kamen AA. Manufacturing of viral vectors for gene therapy: part I. Upstream processing. Pharm Bioprocess 2014; 2: 183-203. doi: 10.4155/pbp.14.16 Merten OW Schweizer M Chahal P Kamen AA Manufacturing of viral vectors for gene therapy: part I Upstream processing. Pharm Bioprocess 2014 2 183 203 10.4155/pbp.14.16Open DOISearch in Google Scholar

van der Loo JCM, Wright JF. Progress and challenges in viral vector manufacturing. Hum Mol Genet 2016; 25: R42-52. doi: 10.1093/hmg/ddv451 van der Loo JCM Wright JF Progress and challenges in viral vector manufacturing Hum Mol Genet 2016 25 R42 52 10.1093/hmg/ddv451480237226519140Open DOISearch in Google Scholar

Ferreira MV, Cabral ET, Coroadinha AS. Progress and perspectives in the development of lentiviral vector producer cells. Biotechnol J 2021; 16. doi: 10.1002/biot.202000017 Ferreira MV Cabral ET Coroadinha AS Progress and perspectives in the development of lentiviral vector producer cells Biotechnol J 2021 16 10.1002/biot.20200001732686901Open DOISearch in Google Scholar

Tomás HA, Rodrigues AF, Carrondo MJT, Coroadinha AS. LentiPro26: novel stable cell lines for constitutive lentiviral vector production. Sci Rep 2018; 8: 1-11. doi: 10.1038/s41598-018-23593-y Tomás HA Rodrigues AF Carrondo MJT Coroadinha AS LentiPro26: novel stable cell lines for constitutive lentiviral vector production Sci Rep 2018 8 1 11 10.1038/s41598-018-23593-y586959829588490Open DOISearch in Google Scholar

Felberbaum RS. The baculovirus expression vector system: a commercial manufacturing platform for viral vaccines and gene therapy vectors. Biotechnol J 2015; 10: 702-14. doi: 10.1002/biot.201400438 Felberbaum RS The baculovirus expression vector system: a commercial manufacturing platform for viral vaccines and gene therapy vectors Biotechnol J 2015 10 702 14 10.1002/biot.201400438715933525800821Open DOISearch in Google Scholar

Kurasawa JH, Park A, Sowers CR, Halpin RA, Tovchigrechko A, Dobson CL, et al Chemically defined, high-density insect cell-based expression system for scalable AAV vector production. Mol Ther Methods Clin Dev 2020; 19: 330-40. doi: 10.1016/j.omtm.2020.09.018 Kurasawa JH Park A Sowers CR Halpin RA Tovchigrechko A Dobson CL et al Chemically defined, high-density insect cell-based expression system for scalable AAV vector production Mol Ther Methods Clin Dev 2020 19 330 40 10.1016/j.omtm.2020.09.018759133133145369Open DOISearch in Google Scholar

Gupta P, Monge M, Boulais A, Chopra N, Hutchinson N. Single-use process platforms for responsive and cost-effective manufacturing. In: Eibl R, Eibl D, editors. Single-use technology in biopharmaceutical manufacture. Hoboken, NY, USA: John Wiley & Sons, Inc 2019. p. 201-10. doi: 10.1002/9781119477891.ch16 Gupta P Monge M Boulais A Chopra N Hutchinson N Single-use process platforms for responsive and cost-effective manufacturing. In: Eibl R, Eibl D, editors. Single-use technology in biopharmaceutical manufacture Hoboken, NY, USA John Wiley & Sons, Inc 2019 p 201 10 10.1002/9781119477891.ch16Open DOISearch in Google Scholar

Minh A, Kamen AA. Critical assessment of purification and analytical technologies for enveloped viral vector and vaccine processing and their current limitations in resolving co-expressed extracellular vesicles. Vaccines 2021; 9: 823. doi: 10.3390/vaccines9080823 Minh A Kamen AA Critical assessment of purification and analytical technologies for enveloped viral vector and vaccine processing and their current limitations in resolving co-expressed extracellular vesicles Vaccines 2021 9 823 10.3390/vaccines9080823840240734451948Open DOISearch in Google Scholar

Merten O-W, Schweizer M, Chahal P, Kamen A. Manufacturing of viral vectors: part II. Downstream processing and safety aspects. Pharm Bioprocess 2014; 2: 237-51. http://www.future-science.com/doi/abs/10.4155/pbp.14.15%0Apapers2://publication/doi/10.4155/pbp.14.15 Merten O-W Schweizer M Chahal P Kamen A Manufacturing of viral vectors: part II Downstream processing and safety aspects. Pharm Bioprocess 2014 2 237 51 http://www.future-science.com/doi/abs/10.4155/pbp.14.15%0Apapers2://publication/doi/10.4155/pbp.14.1510.4155/pbp.14.15Search in Google Scholar

Kaemmerer WF. How will the field of gene therapy survive its success? Bioeng Transl Med 2018; 3: 166-77. doi: 10.1002/btm2.10090 Kaemmerer WF How will the field of gene therapy survive its success? Bioeng Transl Med 2018 3 166 77 10.1002/btm2.10090606387030065971Open DOISearch in Google Scholar

Salzman R, Cook F, Hunt T, Malech HL, Reilly P, Foss-Campbell B, et al. Addressing the value of gene therapy and enhancing patient access to transformative treatments. Mol Ther 2018; 26: 2717-26. doi: 10.1016/j. ymthe.2018.10.017 Salzman R Cook F Hunt T Malech HL Reilly P Foss-Campbell B et al Addressing the value of gene therapy and enhancing patient access to transformative treatments Mol Ther 2018 26 2717 26 10.1016/j.ymthe.2018.10.017627750930414722Open DOISearch in Google Scholar

Capra E, Godfrey A, Loche A, Smith J. Innovation in viral-vector gene therapy: unlocking the promise. [cited 2021 Dec 24]. Available at https://www.mckinsey.com/industries/life-sciences/our-insights/gene-therapy-innovation-unlocking-the-promise-of-viral-vectors Capra E Godfrey A Loche A Smith J Innovation in viral-vector gene therapy: unlocking the promise. [cited 2021 Dec 24] Available at https://www.mckinsey.com/industries/life-sciences/our-insights/gene-therapy-innovation-unlocking-the-promise-of-viral-vectorsSearch in Google Scholar

Wolf MW, Reichl U. Downstream processing of cell culture-derived virus particles. Expert Rev Vaccines 2011; 10: 1451-75. doi: 10.1586/erv.11.111 Wolf MW Reichl U Downstream processing of cell culture-derived virus particles Expert Rev Vaccines 2011 10 1451 75 10.1586/erv.11.111710368121988309Open DOISearch in Google Scholar

Martin NT, Bell JC. Oncolytic virus combination therapy: killing one bird with two stones. Mol Ther 2018; 26: 1414-22. doi: 10.1016/j. ymthe.2018.04.001 Martin NT Bell JC Oncolytic virus combination therapy: killing one bird with two stones Mol Ther 2018 26 1414 22 10.1016/j.ymthe.2018.04.001598672629703699Open DOISearch in Google Scholar

Bridle BW, Boudreau JE, Lichty BD, Brunellière J, Stephenson K, Koshy S, et al. Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumor immunity amenable to rapid boosting with adenovirus. Mol Ther 2009; 17: 1814-21. doi: 10.1038/mt.2009.154 Bridle BW Boudreau JE Lichty BD Brunellière J Stephenson K Koshy S et al Vesicular stomatitis virus as a novel cancer vaccine vector to prime antitumor immunity amenable to rapid boosting with adenovirus Mol Ther 2009 17 1814 21 10.1038/mt.2009.154283501019603003Open DOISearch in Google Scholar

eISSN:
1581-3207
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology