Cite

Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol 2005; 7: 134-53. doi: 10.1215/S1152851704001115KaurBKhwajaFWSeversonEAMathenySLBratDJVan MeirEGHypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesisNeuro Oncol200571345310.1215/S1152851704001115187189415831232Open DOISearch in Google Scholar

Mesti T, Ocvirk J. Malignant gliomas: old and new systemic treatment approaches. Radiol Oncol 2016; 50: 129-38. doi: 10.1515/raon-2015-0003MestiTOcvirkJMalignant gliomas: old and new systemic treatment approachesRadiol Oncol2016501293810.1515/raon-2015-0003485297027247544Open DOISearch in Google Scholar

Yang H, Ye D, Guan KL, Xiong Y. IDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectives. Clin Cancer Res 2012; 18: 5562-71. doi: 10.1158/1078-0432.CCR-12-1773YangHYeDGuanKLXiongYIDH1 and IDH2 mutations in tumorigenesis: mechanistic insights and clinical perspectivesClin Cancer Res20121855627110.1158/1078-0432.CCR-12-1773389721123071358Open DOISearch in Google Scholar

Losman JA, Kaelin WG, Jr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev 2013; 27: 836-52. doi: 10.1101/gad.217406.113LosmanJAKaelinWGJr. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancerGenes Dev2013278365210.1101/gad.217406.113365022223630074Open DOISearch in Google Scholar

Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009; 462: 739-44. doi: 10.1038/nature08617DangLWhiteDWGrossSBennettBDBittingerMADriggersEMet alCancer-associated IDH1 mutations produce 2-hydroxyglutarateNature20094627394410.1038/nature08617281876019935646Open DOISearch in Google Scholar

Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010; 18: 553-67. doi: 10.1016/j.ccr.2010.11.015FigueroaMEAbdel-WahabOLuCWardPSPatelJShihAet alLeukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiationCancer Cell2010185536710.1016/j.ccr.2010.11.015410584521130701Open DOISearch in Google Scholar

Duarte IF, Marques J, Ladeirinha AF, Rocha C, Lamego I, Calheiros R, et al. Analytical approaches toward successful human cell metabolome studies by NMR spectroscopy. Anal Chem 2009; 81: 5023-32. doi: 10.1021/ac900545qDuarteIFMarquesJLadeirinhaAFRochaCLamegoICalheirosRet alAnalytical approaches toward successful human cell metabolome studies by NMR spectroscopyAnal Chem20098150233210.1021/ac900545q19462963Open DOISearch in Google Scholar

Cuperlovic-Culf M, Barnett DA, Culf AS, Chute I. Cell culture metabolomics: applications and future directions. Drug Discov Today 2010; 15: 610-21. doi: 10.1016/j.drudis.2010.06.012Cuperlovic-CulfMBarnettDACulfASChuteI.Cell culture metabolomics: applications and future directionsDrug Discov Today2010156102110.1016/j.drudis.2010.06.01220601091Open DOISearch in Google Scholar

Dietmair S, Timmins NE, Gray PP, Nielsen LK, Kromer JO. Towards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocol. Anal Biochem 2010; 404: 155-64. doi: 10.1016/j. ab.2010.04.031DietmairSTimminsNEGrayPPNielsenLKKromerJOTowards quantitative metabolomics of mammalian cells: development of a metabolite extraction protocolAnal Biochem20104041556410.1016/jab.2010.04.031Open DOISearch in Google Scholar

Kronthaler J, Gstraunthaler G, Heel C. Optimizing high-throughput metabolomic biomarker screening: a study of quenching solutions to freeze intracellular metabolism in CHO cells. Omics 2012; 16: 90-7. doi: 10.1089/ omi.2011.0048KronthalerJGstraunthalerGHeelCOptimizing high-throughput metabolomic biomarker screening: a study of quenching solutions to freeze intracellular metabolism in CHO cellsOmics20121690710.1089/omi.2011.0048Open DOISearch in Google Scholar

Triba MN, Starzec A, Bouchemal N, Guenin E, Perret GY, Le Moyec L. Metabolomic profiling with NMR discriminates between biphosphonate and doxorubicin effects on B16 melanoma cells. NMR Biomed 2010; 23: 1009-16. doi: 10.1002/nbm.1516TribaMNStarzecABouchemalNGueninEPerretGYLe MoyecL.Metabolomic profiling with NMR discriminates between biphosphonate and doxorubicin effects on B16 melanoma cellsNMR Biomed20102310091610.1002/nbm.1516Open DOISearch in Google Scholar

Mesti T, Savarin P, Triba MN, Le Moyec L, Ocvirk J, Banissi C, et al. Metabolic impact of anti-angiogenic agents on U87 glioma cells. PLoS One 2014; 9: e99198 doi: 10.1371/journal.pone.0099198MestiTSavarinPTribaMNLe MoyecLOcvirkJBanissiCet alMetabolic impact of anti-angiogenic agents on U87 glioma cellsPLoS One20149e9919810.1371/journal.pone.0099198Open DOISearch in Google Scholar

Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63. org/10.1016/0022-1759(83)90303-4MosmannTRapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assaysJ Immunol Methods1983655563org/10.1016/0022-1759(83)90303-4Open DOISearch in Google Scholar

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 1995; 6: 277-93.DelaglioFGrzesiekSVuisterGWZhuGPfeiferJBaxANMRPipe: a multidimensional spectral processing system based on UNIX pipesJ Biomol NMR199562779310.1007/BF001978098520220Search in Google Scholar

Trygg J, Wold S. Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics 2002; 16: 119-28. doi: 10.1002/cem.695TryggJWoldSOrthogonal projections to latent structures (O-PLS)Journal of Chemometrics2002161192810.1002/cem.695Open DOISearch in Google Scholar

Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009; 324: 1029-33. doi: 10.1126/science.1160809Vander HeidenMGCantleyLCThompsonCBUnderstanding the Warburg effect: The metabolic requirements of cell proliferationScience200932410293310.1126/science.1160809284963719460998Open DOISearch in Google Scholar

Billah MM, Anthes JC. The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J 1990; 269: 281-91. PMCID: PMC1131573BillahMMAnthesJCThe regulation and cellular functions of phosphatidylcholine hydrolysisBiochem J199026928191PMCID: PMC113157310.1042/bj269028111315732201284Search in Google Scholar

Horska A, Barker PB. Imaging of brain tumors: MR spectroscopy and metabolic imaging. Neuroimaging Clin N Am 2010; 20: 293-310. doi: 10.1016/j. nic.2010.04.003HorskaABarkerPBImaging of brain tumors: MR spectroscopy and metabolic imagingNeuroimaging Clin N Am20102029331010.1016/jnic.2010.04.003Open DOISearch in Google Scholar

Cheng LL, Anthony DC, Comite AR, Black PM, Tzika AA, Gonzalez RG. Quantification of microheterogeneity in glioblastoma multiforme with ex vivo high-resolution magic-angle spinning (HRMAS) proton magnetic resonance spectroscopy. Neuro Oncol 2010; 2: 87-95. doi: 10.1093/neu-onc/2.2.87.ChengLLAnthonyDCComiteARBlackPMTzikaAAGonzalezRGQuantification of microheterogeneity in glioblastoma multiforme with ex vivo high-resolution magic-angle spinning (HRMAS) proton magnetic resonance spectroscopyNeuro Oncol20102879510.1093/neu-onc/2.2.87Open DOISearch in Google Scholar

Maurmann L, Belkacemi L, Adams NR, Majmudar PM, Moghaddas S, Bose RN. A novel cisplatin mediated apoptosis pathway is associated with acid sphingomyelinase and FAS proapoptotic protein activation in ovarian cancer Apoptosis 2015; 20: 960-74. doi: 10.1007/s10495-015-1124-2MaurmannLBelkacemiLAdamsNRMajmudarPMMoghaddasSBoseRNA novel cisplatin mediated apoptosis pathway is associated with acid sphingomyelinase and FAS proapoptotic protein activation in ovarian cancerApoptosis2015209607410.1007/s10495-015-1124-225846011Open DOISearch in Google Scholar

Delikatny EJ, Cooper WA, Brammah S, Sathasivam N, Rideout DC. Nuclear magnetic resonance-visible lipids induced by cationic lipophilic chemotherapeutic agents are accompanied by increased lipid droplet formation and damaged mitochondria. Cancer Res 2002; 62: 1394-400.DelikatnyEJCooperWABrammahSSathasivamNRideoutDCNuclear magnetic resonance-visible lipids induced by cationic lipophilic chemotherapeutic agents are accompanied by increased lipid droplet formation and damaged mitochondriaCancer Res2002621394400Search in Google Scholar

Blankenberg FG, Storrs RW, Naumovski L, Goralski T, Spielman D. Detection of apoptotic cell death by proton nuclear magnetic resonance spectroscopy. Blood 1996; 87: 1951-6.BlankenbergFGStorrsRWNaumovskiLGoralskiTSpielmanDDetection of apoptotic cell death by proton nuclear magnetic resonance spectroscopyBlood1996871951610.1182/blood.V87.5.1951.1951Search in Google Scholar

Blankenberg FG, Katsikis PD, Storrs RW, Beaulieu C, Spielman D, Chen JY, et al. Quantitative analysis of apoptotic cell death using proton nuclear magnetic resonance spectroscopy. Blood 1997; 89: 3778-86.BlankenbergFGKatsikisPDStorrsRWBeaulieuCSpielmanDChenJYet alQuantitative analysis of apoptotic cell death using proton nuclear magnetic resonance spectroscopyBlood19978937788610.1182/blood.V89.10.3778Search in Google Scholar

Al-Saffar NM, Titley JC, Robertson D, Clarke PA, Jackson LE, Leach MO, et al. Apoptosis is associated with triacylglycerol accumulation in Jurkat T-cells. Br J Cancer 2002; 86: 963-70. doi: 10.1038/sj.bjc.6600188.Al-SaffarNMTitleyJCRobertsonDClarkePAJacksonLELeachMOet alApoptosis is associated with triacylglycerol accumulation in Jurkat T-cellsBr J Cancer2002869637010.1038/sj.bjc.6600188236415211953830Open DOISearch in Google Scholar

Griffin JL, Lehtimäki KK, Valonen PK, Gröhn OH, Kettunen MI, Ylä-Herttuala S, et al. Assignment of 1H nuclear magnetic resonance visible polyunsaturated fatty acids in BT4C gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell death. Cancer Res 2003; 63: 3195-201.GriffinJLLehtimäkiKKValonenPKGröhnOHKettunenMIYlä-HerttualaSet alAssignment of 1H nuclear magnetic resonance visible polyunsaturated fatty acids in BT4C gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell deathCancer Res2003633195201Search in Google Scholar

Opstad KS, Bell BA, Griffiths JR, Howe FA. Taurine: a potential marker of apoptosis in gliomas. Briti J Cancer 2009; 100: 789-94. doi: 10.1038/sj.bjc.6604933OpstadKSBellBAGriffithsJRHoweFATaurine: a potential marker of apoptosis in gliomasBriti J Cancer20091007899410.1038/sj.bjc.6604933265376519223899Open DOISearch in Google Scholar

Tien RD, Lai PH, Smith JS, Lazeyras F. Single-voxel proton brain spectroscopy exam (PROBE/SV) in patients with primary brain tumors. AJR Am J Roentgenol 1996; 167: 201-9. doi: 10.2214/ajr.167.1.8659372TienRDLaiPHSmithJSLazeyrasFSingle-voxel proton brain spectroscopy exam (PROBE/SV) in patients with primary brain tumorsAJR Am J Roentgenol1996167201910.2214/ajr.167.1.86593728659372Open DOISearch in Google Scholar

Kolpakova ME, Veselkina OS, Vlasov TD. Creatine in cell metabolism and its protective action in cerebral ischemia. Neurosci Behav Physiol 2015; 45: 476-82. doi: 10.1007/s11055-015-0098-4KolpakovaMEVeselkinaOSVlasovTDCreatine in cell metabolism and its protective action in cerebral ischemiaNeurosci Behav Physiol2015454768210.1007/s11055-015-0098-4Open DOISearch in Google Scholar

Izquierdo-Garcia JL, Viswanath P, Eriksson P, Chaumeil MM, Pieper RO, Phillips JJ, et al. Metabolic reprogramming in mutant IDH1 glioma cells. PLoS One 2015; 10: e0118781. doi: 10.1371/journal.pone.0118781Izquierdo-GarciaJLViswanathPErikssonPChaumeilMMPieperROPhillipsJJet alMetabolic reprogramming in mutant IDH1 glioma cellsPLoS One201510e011878110.1371/journal.pone.0118781433803825706986Open DOISearch in Google Scholar

Reitman ZJ, Jin G, Karoly ED, Spasojevic I, Yang J, Kinzler KW, et al. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci USA 2011; 108: 3270-5. doi: 10.1073/pnas.1019393108ReitmanZJJinGKarolyEDSpasojevicIYangJKinzlerKWet alProfiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolomeProc Natl Acad Sci USA20111083270510.1073/pnas.1019393108304438021289278Open DOISearch in Google Scholar

Dang CV. Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 2010; 70: 859-62. doi: 10.1158/0008-5472. CAN-09-3556DangCVRethinking the Warburg effect with Myc micromanaging glutamine metabolismCancer Res2010708596210.1158/0008-5472.CAN-09-3556281844120086171Open DOISearch in Google Scholar

Halama A, Moller G, Adamski J. Metabolic signatures in apoptotic human cancer cell lines. Omics 2011; 15: 325-35 doi: 10.1089/omi.2010.0121HalamaAMollerGAdamskiJMetabolic signatures in apoptotic human cancer cell linesOmics2011153253510.1089/omi.2010.012121332381Open DOISearch in Google Scholar

Scott DA, Richardson AD, Filipp FV, Knutzen CA, Chiang GG, Ronai ZA, et al. Comparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effect. J Biol Chem 2011; 286: 42626-34. doi: 10.1074/jbc. M111.282046ScottDARichardsonADFilippFVKnutzenCAChiangGGRonaiZAet alComparative metabolic flux profiling of melanoma cell lines: beyond the Warburg effectJ Biol Chem2011286426263410.1074/jbc.M111.282046323498121998308Open DOISearch in Google Scholar

Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 2009; 462: 739-44. doi: 10.1038/nature08617DangLWhiteDWGrossSBennettBDBittingerMADriggersEMet alCancer-associated IDH1 mutations produce 2-hydroxyglutarateNature20094627394410.1038/nature08617281876019935646Open DOISearch in Google Scholar

DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 2007; 104: 19345-50. doi: 10.1073/pnas.0709747104DeBerardinisRJMancusoADaikhinENissimIYudkoffMWehrliSet alBeyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesisProc Natl Acad Sci USA2007104193455010.1073/pnas.0709747104214829218032601Open DOISearch in Google Scholar

Metallo CM, Walther JL, Stephanopoulos G. Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 2009; 144: 167-74. doi: 10.1016/j.jbiotec.2009.07.010MetalloCMWaltherJLStephanopoulosGEvaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cellsJ Biotechnol20091441677410.1016/j.jbiotec.2009.07.010302631419622376Open DOISearch in Google Scholar

Ward PS, Patel J, Wise DR, Abdel-Wahab O, Bennett BD, Coller HA, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell 2010; 17: 225-34. doi: 10.1016/j.ccr.2010.01.020WardPSPatelJWiseDRAbdel-WahabOBennettBDCollerHAet alThe common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarateCancer Cell2010172253410.1016/j.ccr.2010.01.020284931620171147Open DOISearch in Google Scholar

eISSN:
1581-3207
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, Haematology, Oncology, Radiology