This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki (2009). “Quantum entanglement”. Reviews of Modern Physics 81, 865–942, arXiv:quant-ph/0702225.HorodeckiR.HorodeckiP.HorodeckiM.HorodeckiK. (2009). “Quantum entanglement”. Reviews of Modern Physics81, 865–942, arXiv:quant-ph/0702225Search in Google Scholar
C. G. Timpson (2013). Quantum Information Theory and the Foundations of Quantum Mechanics. Oxford University Press.TimpsonC. G. (2013). Quantum Information Theory and the Foundations of Quantum Mechanics. Oxford University PressSearch in Google Scholar
G. Vidal and R. F. Werner (2002). “Computable measure of entanglement”. Physical Review A 65, 032314.VidalG.WernerR. F. (2002). “Computable measure of entanglement”. Physical Review A65, 032314Search in Google Scholar
N.J. Cerf and C. Adami (1998). “Quantum information theory of entanglement”. Physica D 120, 62–81, arXiv:quant-ph/9605039.CerfN. J.AdamiC. (1998). “Quantum information theory of entanglement”. Physica D120, 62–81, arXiv:quant-ph/9605039Search in Google Scholar
J. Emerson, D. Gottesman, S. A. H. Mousavian, and V. Veitch (2014). “The resource theory of stabilizer quantum computation”. New Journal of Physics 16: 1, 013009, arXiv:1307.7171 [quant-ph].EmersonJ.GottesmanD.MousavianS. A. H.VeitchV. (2014). “The resource theory of stabilizer quantum computation”. New Journal of Physics16: 1, 013009, arXiv:1307.7171 [quant-ph]Search in Google Scholar
S. Pirandola et al. (2020). “Advances in quantum cryptography”. Advances in Optics and Photonics 12: 4, 1012–1236, arXiv:1906.01645 [quant-ph].PirandolaS.(2020). “Advances in quantum cryptography”. Advances in Optics and Photonics12: 4, 1012–1236, arXiv:1906.01645 [quant-ph]Search in Google Scholar
N. Laflorencie (2016). “Quantum entanglement in condensed matter systems”. Physics Reports 646, 1–59, arXiv:1512.03388 [cond-mat.str-el].LaflorencieN. (2016). “Quantum entanglement in condensed matter systems”. Physics Reports646, 1–59, arXiv:1512.03388 [cond-mat.str-el]Search in Google Scholar
L. Amico, R. Fazio, A. Osterloh, and V. Vedral (2008). “Entanglement in many-body systems”. Reviews of Modern Physics 80, 517–576, arXiv:quant-ph/0703044.AmicoL.FazioR.OsterlohA.VedralV. (2008). “Entanglement in many-body systems”. Reviews of Modern Physics80, 517–576, arXiv:quant-ph/0703044Search in Google Scholar
A. Streltsov, U. Singh, H. S. Dhar, M. N. Bera, and G. Adesso (2015). “Measuring Quantum Coherence with Entangle-ment”. Physical Review Letters 115: 2, 020403, arXiv:1502.05876 [quant-ph].StreltsovA.SinghU.DharH. S.BeraM. N.AdessoG. (2015). “Measuring Quantum Coherence with Entangle-ment”. Physical Review Letters115: 2, 020403, arXiv:1502.05876 [quant-ph]Search in Google Scholar
P. V. Klimov et al. (2024). “Optimizing quantum gates towards the scale of logical qubits”. Nature Communications 15: 1, 2442, arXiv:2308.02321 [quant-ph].KlimovP. V.(2024). “Optimizing quantum gates towards the scale of logical qubits”. Nature Communications15: 1, 2442, arXiv:2308.02321 [quant-ph]Search in Google Scholar
M.-H. Hsieh, I. Devetak, and T. Brun (2007). “General entanglement-assisted quantum error-correcting codes”. Physical Review A 76, 062313.HsiehM. -H.DevetakI.BrunT. (2007). “General entanglement-assisted quantum error-correcting codes”. Physical Review A76, 062313Search in Google Scholar
M.-L. Hu, X.-Q. Xi, and H.-L. Lian (2009). “Thermal and phase decoherence effects on entanglement dynamics of the quantum spin systems”. Physica B: Condensed Matter 404: 20, 3499–3506.HuM. -L.XiX. -Q.LianH. -L.(2009). “Thermal and phase decoherence effects on entanglement dynamics of the quantum spin systems”. Physica B: Condensed Matter404: 20, 3499–3506Search in Google Scholar
J. Zhang (2013). “Entanglement dynamics of two-qubit pure state”. Quantum Information Processing 12, 1627–166.ZhangJ. (2013). “Entanglement dynamics of two-qubit pure state”. Quantum Information Processing12, 1627–166Search in Google Scholar
J. Feng-Jian, S. Ming-Jun, and D. Jiang-Feng (2011). “Entanglement dynamics of arbitrary two-qubit pure states under amplitude and phase damping channels”. Chinese Physics Letters 28: 2, 020308–020308.Feng-JianJ.Ming-JunS.Jiang-FengD. (2011). “Entanglement dynamics of arbitrary two-qubit pure states under amplitude and phase damping channels”. Chinese Physics Letters28: 2, 020308–020308Search in Google Scholar
L. S. Silveira and R. M. Angelo (2017). “Classical-hidden-variable description for entanglement dynamics of two-qubit pure states”. Physical Review A 95, 062105.SilveiraL. S.AngeloR. M. (2017). “Classical-hidden-variable description for entanglement dynamics of two-qubit pure states”. Physical Review A95, 062105Search in Google Scholar
M. A. Nielsen, I. L. Chuang (1992). Quantum Computation and Quantum Information. Cambridge University Press.NielsenM. A.ChuangI. L. (1992). Quantum Computation and Quantum Information. Cambridge University PressSearch in Google Scholar
C. H. Bennett and S. J. Wiesner (1992). “Communication via one-and two-particle operators on einstein-podolsky-rosen states”. Physical Review Letters 69, 2881–2884.BennettC. H.WiesnerS. J. (1992). “Communication via one-and two-particle operators on einstein-podolsky-rosen states”. Physical Review Letters69, 2881–2884Search in Google Scholar
C. H. Bennett (1992). “Quantum cryptography using any two nonorthogonal states”. Physical Review Letters 68, 3121–3124.BennettC. H. (1992). “Quantum cryptography using any two nonorthogonal states”. Physical Review Letters68, 3121–3124Search in Google Scholar
C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters (1993). “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels”. Physical Review Letters 70, 1895–1899.BennettC. H.BrassardG.CrépeauC.JozsaR.PeresA.WoottersW. K. (1993). “Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels”. Physical Review Letters70, 1895–1899Search in Google Scholar
G. Lindblad (1976). “On the generators of quantum dynamical semigroups”. Communications in Mathematical Physics 48, 119–130.LindbladG. (1976). “On the generators of quantum dynamical semigroups”. Communications in Mathematical Physics48, 119–130Search in Google Scholar
K.-T. Guo, M.-C. Liang, H.-Y. Xu, and C.-B. Zhu (2011). “Entanglement in a two-spin (1/2, 3/2) mixed-spin Heisenberg XX chain with an inhomogeneous external magnetic field”. Science China Physics, Mechanics & Astronomy 54, 491–495.GuoK. -T.LiangM. -C.XuH. -Y.ZhuC. -B.(2011). “Entanglement in a two-spin (1/2, 3/2) mixed-spin Heisenberg XX chain with an inhomogeneous external magnetic field”. Science China Physics, Mechanics & Astronomy54, 491–495Search in Google Scholar
V. Eisler and Z. Zimborás (2005). “Entanglement in the xx spin chain with an energy current”. Physical Review A 71, 042318.EislerV.ZimborásZ. (2005). “Entanglement in the xx spin chain with an energy current”. Physical Review A71, 042318Search in Google Scholar
X. S. Ma (2008). “Thermal entanglement of a two-qutrit xx spin chain with dzialoshinski–moriya interaction”. Optics Communications 281: 3, 484–488.MaX. S. (2008). “Thermal entanglement of a two-qutrit xx spin chain with dzialoshinski–moriya interaction”. Optics Communications281: 3, 484–488Search in Google Scholar
S. Hill and W. K. Wootters (1997). “Entanglement of a pair of quantum bits”. Physical Review Letters 78, 5022–5025, arXiv:quant-ph/9703041.HillS.WoottersW. K. (1997). “Entanglement of a pair of quantum bits”. Physical Review Letters78, 5022–5025, arXiv:quant-ph/9703041Search in Google Scholar
W. K. Wootters (1998). “Entanglement of formation of an arbitrary state of two qubits”. Physical Review Letters 80, 2245–2248, arXiv:quant-ph/9709029.WoottersW. K. (1998). “Entanglement of formation of an arbitrary state of two qubits”. Physical Review Letters80, 2245–2248, arXiv:quant-ph/9709029Search in Google Scholar
K. S. A. R. Conn and L. N. Vicente (2009). “Introduction to derivative-free optimization”. MPS-SIAM Book Series on Optimization.ConnK. S. A. R.VicenteL. N. (2009). “Introduction to derivative-free optimization”. MPS-SIAM Book Series on OptimizationSearch in Google Scholar
H.-P. Breuer and F. Petruccione (2002). The Theory of Open Quantum Systems. Oxford University Press.BreuerH. -P.PetruccioneF. (2002). The Theory of Open Quantum Systems. Oxford University PressSearch in Google Scholar
H.-h. Miao and W.-s. Li (2025). “Entanglement and quantum discord in the cavity QED models”. Heliyon 11, 41194, arXiv:2307.07352 [quant-ph].MiaoH. -h.LiW. -s.(2025). “Entanglement and quantum discord in the cavity QED models”. Heliyon11, 41194, arXiv:2307.07352 [quant-ph]Search in Google Scholar