Open Access

Quantum Algorithms for Calculating Determinant and Inverse of Matrix and Solving Linear Algebraic Systems

, , ,  and   
May 26, 2025

Cite
Download Cover

P. W. Shor (1994). “Algorithms for quantum computation: discrete logarithms and factoring”, in Proceedings 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, pp. 124–134 Shor P. W. ( 1994 ). “ Algorithms for quantum computation: discrete logarithms and factoring ”, in Proceedings 35th Annual Symposium on Foundations of Computer Science , Santa Fe, NM , pp. 124 134 . Search in Google Scholar

P. W. Shor (1997). “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer”. SIAM J. Comput. 26, 5. Shor P. W. ( 1997 ). “ Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer ”. SIAM J. Comput . 26 , 5 . Search in Google Scholar

D. Deutsch (1985). “Quantum theory, the Church-turing principle and the universal quantum computer”. Proc. R. Soc. Lond. A 400, 97. Deutsch D. ( 1985 ). “ Quantum theory, the Church-turing principle and the universal quantum computer ”. Proc. R. Soc. Lond. A 400 , 97 . Search in Google Scholar

L. Grover (1996). “A fast quantum mechanical algorithm for database search, STOC”, in 96: Proceedings 28th Annual ACM Symposium on the Theory of Computation. New York: ACM Press. Grover L. ( 1996 ). “ A fast quantum mechanical algorithm for database search, STOC ”, in 96: Proceedings 28th Annual ACM Symposium on the Theory of Computation . New York : ACM Press . Search in Google Scholar

D. Coppersmith (2002). “An approximate Fourier transform useful in quantum factoring”. IBM Research Report, RC 19642. Coppersmith D. ( 2002 ). “ An approximate Fourier transform useful in quantum factoring ”. IBM Research Report, RC 19642 . Search in Google Scholar

Y. S. Weinstein, M. A. Pravia, E. M. Fortunato, S. Lloyd, and D. G. Cory (2001). “Implementation of the quantum Fourier transform”. Phys. Rev. Lett. 86, 1889. Weinstein Y. S. Pravia M. A. Fortunato E. M. Lloyd S. Cory D. G. ( 2001 ). “ Implementation of the quantum Fourier transform ”. Phys. Rev. Lett . 86 , 1889 . Search in Google Scholar

M. A. Nielsen and I. L. Chuang (2000). Quantum Computation and Quantum Information. Cambridge: Cambridge University Press. Nielsen M. A. Chuang I. L. ( 2000 ). Quantum Computation and Quantum Information . Cambridge : Cambridge University Press . Search in Google Scholar

H. Wang, L. Wu, Y. Liu, and F. Nori (2010). “Measurement-based quantum phase estimation algorithm for finding eigenvalues of non-unitary matrices”. Phys. Rev. A. 82, 062303. Wang H. Wu L. Liu Y. Nori F. ( 2010 ). “ Measurement-based quantum phase estimation algorithm for finding eigenvalues of non-unitary matrices ”. Phys. Rev. A . 82 , 062303 . Search in Google Scholar

A. W. Harrow, A. Hassidim, and S. Lloyd (2009). “Quantum algorithm for linear systems of equations”. Phys. Rev. Lett. 103, 150502 Harrow A. W. Hassidim A. Lloyd S. ( 2009 ). “ Quantum algorithm for linear systems of equations ”. Phys. Rev. Lett . 103 , 150502 . Search in Google Scholar

B. D. Clader, B. C. Jacobs, and C. R. Sprouse (2013). “Preconditioned quantum linear system algorithm”. Phys. Rev. Lett. 110, 250504. Clader B. D. Jacobs B. C. Sprouse C. R. ( 2013 ). “ Preconditioned quantum linear system algorithm ”. Phys. Rev. Lett . 110 , 250504 . Search in Google Scholar

J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, and S. Lloyd (2017). “Quantum machine learning”. Nature 549, 195. Biamonte J. Wittek P. Pancotti N. Rebentrost P. Wiebe N. Lloyd S. ( 2017 ). “ Quantum machine learning ”. Nature 549 , 195 . Search in Google Scholar

L. Wossnig, Z. Zhao, and A. Prakash (2018). “Quantum linear system algorithm for dense matrices”. Phys. Rev. Lett. 120, 050502. Wossnig L. Zhao Z. Prakash A. ( 2018 ). “ Quantum linear system algorithm for dense matrices ”. Phys. Rev. Lett . 120 , 050502 . Search in Google Scholar

X. D. Cai, C. Weedbrook, Z. E. Su, M. C. Chen, M. Gu, M. J. Zhu, L. Li, N. L. Liu, C. Y. Lu, and J. W. Pan (2013). “Experimental quantum computing to solve systems of linear equations”. Phys. Rev. Lett. 110, 230501. Cai X. D. Weedbrook C. Su Z. E. Chen M. C. Gu M. Zhu M. J. Li L. Liu N. L. Lu C. Y. Pan J. W. ( 2013 ). “ Experimental quantum computing to solve systems of linear equations ”. Phys. Rev. Lett . 110 , 230501 . Search in Google Scholar

J. W. Pan, Y. Cao, X. Yao, Z. Li, C. Ju, H. Chen, X. Peng, S. Kais, and J. Du (2014). “Experimental realization of quantum algorithm for solving linear systems of equations”. Phys. Rev. A. 89, 022313. Pan J. W. Cao Y. Yao X. Li Z. Ju C. Chen H. Peng X. Kais S. Du J. ( 2014 ). “ Experimental realization of quantum algorithm for solving linear systems of equations ”. Phys. Rev. A . 89 , 022313 . Search in Google Scholar

S. Barz, I. Kassal, M. Ringbauer, Y. O. Lipp, B. Dakić, A. Aspuru-Guzik, and P. Walther (2014). “A two-qubit photonic quantum processor and its application to solving systems of linear equations”. Sci. Rep. 4, 6115. Barz S. Kassal I. Ringbauer M. Lipp Y. O. Dakić B. Aspuru-Guzik A. Walther P. ( 2014 ). “ A two-qubit photonic quantum processor and its application to solving systems of linear equations ”. Sci. Rep . 4 , 6115 . Search in Google Scholar

Y. Zheng, C. Song, M. C. Chen, B. Xia, W. Liu, Q. Guo, L. Zhang, D. Xu, H. Deng, K. Huang, Y. Wu, Z. Yan, D. Zheng, L. Lu, J. W. Pan, H. Wang, C. Y. Lu, and X. Zhu (2017). “Solving systems of linear equations with a superconducting quantum processor”. Phys. Rev. Lett. 118, 210504. Zheng Y. Song C. Chen M. C. Xia B. Liu W. Guo Q. Zhang L. Xu D. Deng H. Huang K. Wu Y. Yan Z. Zheng D. Lu L. Pan J. W. Wang H. Lu C. Y. Zhu X. ( 2017 ). “ Solving systems of linear equations with a superconducting quantum processor ”. Phys. Rev. Lett . 118 , 210504 . Search in Google Scholar

A. T.-Shma (2013). “Inverting well conditioned matrices in quantum logspace”, in Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC’13. New York, pp. 881–890. Shma A. T.- ( 2013 ). “ Inverting well conditioned matrices in quantum logspace ”, in Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC’13 . New York , pp. 881 890 . Search in Google Scholar

D. Aharonov and A. T.-Shma (2007). “Adiabatic quantum state generation”. SIAM Journal on Computing 37(1), 47. Aharonov D. Shma A. T.- ( 2007 ). “ Adiabatic quantum state generation ”. SIAM Journal on Computing 37 ( 1 ), 47 . Search in Google Scholar

G. Brassard, P. Hoyer, M. Mosca, and A. Tapp (2002). “Quantum amplitude amplification and estimation”. Contemp. Math. 305, 53–74. Brassard G. Hoyer P. Mosca M. Tapp A. ( 2002 ). “ Quantum amplitude amplification and estimation ”. Contemp. Math . 305 , 53 74 . Search in Google Scholar

A. M. Childs, R. Kothari, and R. D. Somma (2017). “Quantum algorithm for systems of linear equations with exponentially improved dependence on precision”. SIAM J. Comput. 46, 1920–1950. Childs A. M. Kothari R. Somma R. D. ( 2017 ). “ Quantum algorithm for systems of linear equations with exponentially improved dependence on precision ”. SIAM J. Comput . 46 , 1920 1950 . Search in Google Scholar

A. Gilyén, Y. Su, G. H. Low, and N. Wiebe (2019). “Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics”, in STOC 2019: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 193–204. Gilyén A. Su Y. Low G. H. Wiebe N. ( 2019 ). “ Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics ”, in STOC 2019: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing , pp. 193 204 . Search in Google Scholar

G. H. Low and I. L. Chuang (2017). “Optimal Hamiltonian simulation by quantum signal processing”. Phys. Rev. Lett. 118, 010501. Low G. H. Chuang I. L. ( 2017 ). “ Optimal Hamiltonian simulation by quantum signal processing ”. Phys. Rev. Lett . 118 , 010501 . Search in Google Scholar

G. H. Low, T. J. Yoder, and I. L. Chuang (2016). “Methodology of resonant equiangular composite quantum gates”. Phys. Rev. X 6, 041067. Low G. H. Yoder T. J. Chuang I. L. ( 2016 ). “ Methodology of resonant equiangular composite quantum gates ”. Phys. Rev. X 6 , 041067 . Search in Google Scholar

D. An and L. Lin (2022). “Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm”. ACM Trans. Quantum Comput. 3(2), Article 5, 1–28. An D. Lin L. ( 2022 ). “ Quantum linear system solver based on time-optimal adiabatic quantum computing and quantum approximate optimization algorithm ”. ACM Trans. Quantum Comput . 3 ,( 2 ), Article 5, 1 28 . Search in Google Scholar

S. Jansen, M.-B. Ruskai, and R. Seiler (2007). “Bounds for the adiabatic approximation with applications to quantum computation”. J. Math. Phys. 48(10), 102111. Jansen S. Ruskai M.-B. Seiler R. ( 2007 ). “ Bounds for the adiabatic approximation with applications to quantum computation ”. J. Math. Phys . 48 ,( 10 ), 102111 . Search in Google Scholar

Y. Subaşı, R. D. Somma, and D. Orsucci (2019). “Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing”. Phys. Rev. Lett. 122, 060504. Subaşı Y. Somma R. D. Orsucci D. ( 2019 ). “ Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing ”. Phys. Rev. Lett . 122 , 060504 . Search in Google Scholar

T. Albash and D. A. Lidar (2018). “Adiabatic quantum computation”. Rev. Mod. Phys. 90, 015002. Albash T. Lidar D. A. ( 2018 ). “ Adiabatic quantum computation ”. Rev. Mod. Phys . 90 , 015002 . Search in Google Scholar

Y. Tong, D. An, N. Wiebe, and L. Lin (2021). “Fast inversion, preconditioned quantum linear system solvers, fast Green’s function computation, and fast evaluation of matrix functions”. Phys. Rev. A 104, 032422. Tong Y. An D. Wiebe N. Lin L. ( 2021 ). “ Fast inversion, preconditioned quantum linear system solvers, fast Green’s function computation, and fast evaluation of matrix functions ”. Phys. Rev. A 104 , 032422 . Search in Google Scholar

S. Aaronson (2015). “Read the fine print”. Nature Phys. 11, 291–293. Aaronson S. ( 2015 ). “ Read the fine print ”. Nature Phys . 11 , 291 293 . Search in Google Scholar

P. Rebentrost„ M. Mohseni, and S. Lloyd (2014). “Quantum support vector machine for big data classification”. Phys. Rev. Lett. 113, 130503. Rebentrost P. Mohseni M. Lloyd S. ( 2014 ). “ Quantum support vector machine for big data classification ”. Phys. Rev. Lett . 113 , 130503 . Search in Google Scholar

N. Wiebe, D. Braun, and S. Lloyd (2012). “Quantum algorithm for data fitting”. Phys. Rev. Lett. 109, 050505. Wiebe N. Braun D. Lloyd S. ( 2012 ). “ Quantum algorithm for data fitting ”. Phys. Rev. Lett . 109 , 050505 . Search in Google Scholar

M. Schuld, I. Sinayskiy, and F. Petruccione (2016). “Prediction by linear regression on a quantum computer”. Phys. Rev. A 94, 022342. Schuld M. Sinayskiy I. Petruccione F. ( 2016 ). “ Prediction by linear regression on a quantum computer ”. Phys. Rev. A 94 , 022342 . Search in Google Scholar

G. Wang (2017). “Quantum algorithm for linear regression”. Phys. Rev. A 96, 012335. Wang G. ( 2017 ). “ Quantum algorithm for linear regression ”. Phys. Rev. A 96 , 012335 . Search in Google Scholar

F. L. Gall, “Robust dequantization of the quantum singular value transformation and quantum machine learning algorithms,” arXiv:2304.04932 [quant-ph]. Gall F. L. , “ Robust dequantization of the quantum singular value transformation and quantum machine learning algorithms ,” arXiv:2304.04932 [quant-ph] . Search in Google Scholar

D. W. Berry (2014). “High-order quantum algorithm for solving linear differential equations”. J. Phys. A: Math. Theor. 47(10) 105301. Berry D. W. ( 2014 ). “ High-order quantum algorithm for solving linear differential equations ”. J. Phys. A: Math. Theor . 47 ,( 10 ) 105301 . Search in Google Scholar

J.-P. Liu, H. Kolden, H. K. Krovi, N. F. Loureiro, K. Trivisa, and A. M. Childs (2021). “Efficient quantum algorithm for dissipative nonlinear differential equations”. PNAS 118(35), e2026805118. Liu J.-P. Kolden H. Krovi H. K. Loureiro N. F. Trivisa K. Childs A. M. ( 2021 ). “ Efficient quantum algorithm for dissipative nonlinear differential equations ”. PNAS 118 ( 35 ), e2026805118 . Search in Google Scholar

J. M. Martyn, Z. M. Rossi, A. K. Tan, I. L. Chuang (2021). “A grand unification of quantum algorithms”. PRX Quantum 2, 040203 Martyn J. M. Rossi Z. M. Tan A. K. Chuang I. L. ( 2021 ). “ A grand unification of quantum algorithms ”. PRX Quantum 2 , 040203 Search in Google Scholar

I. Novikau, I. Joseph (2024). “Estimating QSVT angles for matrix inversion with large condition numbers”. arXiv:2408.15453v2 [quant-ph] Novikau I. Joseph I. ( 2024 ). “ Estimating QSVT angles for matrix inversion with large condition numbers ”. arXiv:2408.15453v2 [quant-ph] Search in Google Scholar

L. Zhao, Z. Zhao, P. Rebentrost, and J. Fitzsimons (2021). “Compiling basic linear algebra subroutines for quantum computers”. Quantum Mach. Intell. 3, 21. Zhao L. Zhao Z. Rebentrost P. Fitzsimons J. ( 2021 ). “ Compiling basic linear algebra subroutines for quantum computers ”. Quantum Mach. Intell . 3 , 21 . Search in Google Scholar

S. I. Doronin, E. B. Fel’dman, and A. I. Zenchuk (2020). “Solving systems of linear algebraic equations via unitary transformations on quantum processor of IBM quantum experience”. Quantum Inf. Process 19, 68. Doronin S. I. Fel’dman E. B. Zenchuk A. I. ( 2020 ). “ Solving systems of linear algebraic equations via unitary transformations on quantum processor of IBM quantum experience ”. Quantum Inf. Process 19 , 68 . Search in Google Scholar

H. Li, N. Jiang, Z. Wang, J. Wang, and R. Zhou (2021). “Quantum matrix multiplier”. Int. J. Theor. Phys. 60, 2037–2048. Li H. Jiang N. Wang Z. Wang J. Zhou R. ( 2021 ). “ Quantum matrix multiplier ”. Int. J. Theor. Phys . 60 , 2037 2048 . Search in Google Scholar

R. Kothari and A. Nayak (2015). “Quantum algorithms for matrix multiplication and product verification”, in: M.-Y. Kao (eds), Encyclopedia of Algorithms, Berlin, Heidelberg: Springer. Kothari R. Nayak A. ( 2015 ). “ Quantum algorithms for matrix multiplication and product verification ”, in: Kao M.-Y. (eds), Encyclopedia of Algorithms , Berlin, Heidelberg : Springer . Search in Google Scholar

W. Qi, A. I. Zenchuk, A. Kumar, and J. Wu (2024). “Quantum algorithms for matrix operations and linear systems of equations”. Commun. Theor. Phys. 76, 035103. Qi W. Zenchuk A. I. Kumar A. Wu J. ( 2024 ). “ Quantum algorithms for matrix operations and linear systems of equations ”. Commun. Theor. Phys . 76 , 035103 . Search in Google Scholar

A. I. Zenchuk, W. Qi, A. Kumar, and J. Wu (2024). “Matrix manipulations via unitary transformations and ancilla-state measurements”. Quantum Inf. Comp. 24(13,14),1099–110. Zenchuk A. I. Qi W. Kumar A. Wu J. ( 2024 ). “ Matrix manipulations via unitary transformations and ancilla-state measurements ”. Quantum Inf. Comp . 24 ,( 13,14 ), 1099 110 . Search in Google Scholar

S. J. Berkowitz (1984). “On computing the determinant in small parallel time using a small number of processors”. Inf. Process. Lett. 18(3), 147–150. Berkowitz S. J. ( 1984 ). “ On computing the determinant in small parallel time using a small number of processors ”. Inf. Process. Lett . 18 ,( 3 ), 147 150 . Search in Google Scholar

E. Boix-Adserá, L. Eldar, S. Mehraban, “Approximating the determinant of well-conditioned matrices by shallow circuits”. arXiv:1912.03824 [cs.DS]. Boix-Adserá E. Eldar L. Mehraban S. , “ Approximating the determinant of well-conditioned matrices by shallow circuits ”. arXiv:1912.03824 [cs.DS] . Search in Google Scholar

A. Yu. Kitaev, A. H. Shen, M. N. Vyalyi (2002). “Classical and quantum computation” in Graduate Studies in Mathematics, V.47, Providence, RI: American Mathematical Society. Kitaev A. Yu. Shen A. H. Vyalyi M. N. ( 2002 ). “ Classical and quantum computation ” in Graduate Studies in Mathematics , V. 47 , Providence, RI : American Mathematical Society . Search in Google Scholar

E. B. Fel’dman, A. I. Zenchuk, W. Qi, and J. Wu, “Remarks on controlled measurement and quantum algorithm for calculating Hermitian conjugate”, arXiv:2501.16028v1. Fel’dman E. B. Zenchuk A. I. Qi W. Wu J. , “ Remarks on controlled measurement and quantum algorithm for calculating Hermitian conjugate ”, arXiv:2501.16028v1 . Search in Google Scholar

Language:
English
Publication timeframe:
1 times per year
Journal Subjects:
Physics, Quantum Physics