1. bookVolume 75 (2021): Issue 3 (June 2021)
Journal Details
First Published
14 Sep 2008
Publication timeframe
6 times per year
access type Open Access

Genetic Structure of Perch Perca Fluviatilis (L.) Populations in Latvian Rivers that are Fragmented (Daugava) and Non-Fragmented (Lielupe) By Hydroelectric Dams

Published Online: 22 Jul 2021
Page range: 211 - 219
Received: 12 Jan 2020
Accepted: 16 Feb 2021
Journal Details
First Published
14 Sep 2008
Publication timeframe
6 times per year

Water ecosystems have an important role in maintenance of biological diversity and environmental quality in Latvia. Fish resources are one of the most valuable biological resources in Latvia. To evaluate the influence of economic activity (anthropogenic influence of cities, hydroelectric power stations) on freshwater ecosystems, the genetic structure of perch Perca fluviatilis (L.) populations in Daugava River and Lielupe River was studied. The genetic structure of the perch populations from Daugava River and Lielupe River was investigated using 9 DNA microsatellites (Pfla L4, Pfla L10, Pfla L2, Pfla L6, YP111, YP78, YP60, Svi L10, Svi L7), and by genetic diversity, the level of polymorphism, means of alleles per locus, observed and expected heterozygosity, and population structuring. It was shown that the perch population in the Daugava River in the territory of Riga was significantly different from the other populations and there was a lower level of heterozygosity in this population. In the Daugava River, genetic differentiation was significant for fish populations between Ķegums Hydroelectric Power Plant (HPP) and Riga HPP reservoirs due to the fragmentation of population by HPP dams.


Abdul-Muneer, P. M. (2014). Application of microsatellite markers in conservation genetics and fisheries management: Recent advances in population structure analysis and conservation strategies. Genet. Res. Int., 2014, 691759. Search in Google Scholar

Aljanabi, S. M., Martinez, I. (1997). Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res., 25 (22), 4692–4693. Search in Google Scholar

Altukhov, Yu. P., Salmenkova, E. A., Omelchenko, V. T. (2000). Salmonid Fishes: Population Biology, Genetics and Management. John Wiley & Sons. 368 pp. Search in Google Scholar

Bahri-Sfar, L., Lemaire, C., Kalthoum, Ben Hassine, O., Bonhomme, F. (2000). Fragmentation of sea bass populations in the western and eastern Mediterranean as revealed by microsatellite polymorphism. Proc. R. Soc. B., 267 (1446), 929–935. Search in Google Scholar

Barton, N. H., Slatkin, M. (1986). A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity, 56 (3), 409. Search in Google Scholar

Behrmann-Godel, J., Gerlach, G. (2008). First evidence for postzygotic reproductive isolation between two populations of Eurasian perch (Perca fluviatilis L.) within Lake Constance. Front. Zool., 5 (1), 3. Search in Google Scholar

Bourret, V., Couture, P., Campbell, P. G., Bernatchez, L. (2008). Evolutionary ecotoxicology of wild yellow perch (Perca flavescens) populations chronically exposed to a polymetallic gradient. Aquat. Toxicol., 86 (1), 76–90. Search in Google Scholar

Butkauskas, D., Ragauskas, A., Sruoga, A., Kesminas, V., Ložys, L., Rashal, I., Tzeng, W.-N., Žalakevičius, M. (2012). Investigations into genetic diversity of the perch inhabiting Ignalina nuclear power plant cooler and other inland water bodies of Lithuania on the basis of mtDNA analysis. Veterinarija ir Zootechnika, 60 (82), 7–12. Search in Google Scholar

Cornuet, J. M., Piry, S., Luikart, G., Estoup, A., Solignac, M. (1997). New methods employing multilocus genotypes to select or exclude populations as origins of individuals. Genetics, 153 (4), 1989–2000. Search in Google Scholar

Dannewitz, J., Maes, G. E., Johansson, L., Wickström, H., Volckaert, F. A., Järvi, T. (2005). Panmixia in the European eel: A matter of time. Proc. R. Soc. B, 272 (1568), 1129–1137. Search in Google Scholar

Dehais, C., Eudeline, R., Berrebi, P., Argillier, C. (2010). Microgeographic genetic isolation in chub (Cyprinidae: Squalius cephalus) population of the Durance River: Estimating fragmentation by dams. Ecol. Freshw. Fish., 19 (2), 267–278. Search in Google Scholar

Dynesius, M., Nilsson, C. (1994). Fragmentation and flow regulation of river systems in the northern third of the world. Science, 266 (5186), 753–762. Search in Google Scholar

Earl, D. A. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour., 4 (2), 359–361. Search in Google Scholar

Ellstrand, N. C., Elam, D. R. (1993). Population genetic consequences of small population size: Implications for plant conservation. Annu. Rev. Ecol. Syst., 24 (1), 217–242. Search in Google Scholar

Fokina, O., Grauda, D., Rashal, I. (2015). Genetic diversity of two perch Perca fluviatilis populations of the Latgale region. In: Environment. Technology. Resources. Proceedings of the 10th International Scientific and Practical Conference, 1820 June, 2015, Rēzekne, Latvia, Volume II, pp. 96–98. Search in Google Scholar

Gouskov, A., Reyes, M., Wirthner-Bitterlin, L., Vorburger, C. (2016). Fish population genetic structure shaped by hydroelectric power plants in the upper Rhine catchment. Evol. Appl., 9 (2), 394–408. Search in Google Scholar

Gouskov, A., Vorburger, C. (2016). Postglacial recolonizations, watershed crossings and human translocations shape the distribution of chub lineages around the Swiss Alps. BMC Evol. Biol., 16, 185–198. Search in Google Scholar

Gum, B., Gross, R., Kuehn, R. (2005). Mitochondrial and nuclear DNA phylogeography of European grayling (Thymallus thymallus): Evidence for secondary contact zones in central Europe. Mol. Ecol., 14 (6), 1707–1725. Search in Google Scholar

Heermann, L., Emmrich, M., Heynen, M., Dorow M., König U., Borcherding, J., Arlinghaus R. (2013). Explaining recreationalangling catch rates of Eurasian perch Perca fluviatilis: the role of natural andfishing-related environmental factors. Fish. Manage. Ecol., 20, 187–200. Search in Google Scholar

Hubisz, M. J., Falush, D., Stephens, M., Pritchard, J. K. (2009). Inferring weak population structure with the assistance of sample group information. Mol. Ecol. Res., 9 (5), 1322–1332. Search in Google Scholar

Khedkar, G. D., Jamdade, R., Naik, S., David, L., Haymer, D. (2014). DNA barcodes for the fishes of the Narmada, one of India’s longest rivers. PLoS One, 9 (7), e101460. Search in Google Scholar

Kokina, I., Rubeniņa, I., Bankovska, L., Mickeviča, I., Gavarāne, I. (2018). Case study of microsatellite polymorphism of European perch in selected commercially important lakes of Latvia. Biologia, 73 (3), 273–280. Search in Google Scholar

Langella, O. (2005). Populations, a free population genetic software (1990–2005). http://bioinformatics.org/~tryphon/populations/ (accessed 17 February 2019). Search in Google Scholar

Leclerc, D., Wirth, T., Bernatchez, L. (2000). Isolation and characterization of microsatellite loci in the yellow perch (Perca flavescens), and cross-species amplification within the family Percidae. Mol. Ecol., 9 (7), 995–997. Search in Google Scholar

Li, L., Wang, H. P., Givens, C., Czesny, S., Brown, B. (2007). Isolation and characterization of microsatellites in yellow perch (Perca flavescens). Mol. Ecol. Notes, 7 (4), 600–603. Search in Google Scholar

Lieb, D. A., Carline, R. F. (2000). Effects of urban runoff from a detention pond on water quality, temperature and caged Gammarus minus (Say) (Amphipoda) in a headwater stream. Hydrobiologia, 441 (1), 107–116. Search in Google Scholar

Lynch, M., Conery, J., Burger, R. (1995). Mutation accumulation and the extinction of small populations. Amer. Nat., 146 (4), 489–518. Search in Google Scholar

Morrissey, M. B., de Kerckhove, D. T. (2009). The maintenance of genetic variation due to asymmetric gene flow in dendritic metapopulations. Amer. Nat., 174 6), 875–889. Search in Google Scholar

Nagylaki, T. (1998). Fixation indices in subdivided populations. Genetics, 148 (3), 1325–1332. Search in Google Scholar

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proc. Nat. Acad. Sci. USA, 70 (12), 3321–3323. Search in Google Scholar

Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89 (3), 583–590. Search in Google Scholar

Nei, M. (1987). Molecular Evolutionary Genetics. Columbia University Press, New York. 512 pp. Search in Google Scholar

Nei, M., F. Tajima, Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from molecular data. 2. Genefrequency data. J. Mol. Evol., 19, 153–170. Search in Google Scholar

Nei, M., Takezaki, N. (1994). Estimation of genetic distances and phylogenetic trees from DNA analysis. In: Proceedings of the 5th World Congress on Genetics Applied to Livestock Production. Gene Mapping; Polymorphisms; Disease Genetic Markers; Marker Assisted Selection; Gene Expression; Transgenes; Non-convention, 7–12 August 1994. Ontario, Canada, Vol. 21 pp. 405–412. Search in Google Scholar

Nelson J. S. (2006). Fishes of the World. Fourth edition. John Wiley Sons, Hoboken. 624 pp Search in Google Scholar

Nfon, E., Cousins, I. T., Järvinen, O., Mukherjee, A. B., Verta, M., Broman, D. (2009). Trophodynamics of mercury and other trace elements in a pelagic food chain from the Baltic Sea. Sci. Total Environ., 407 (24), 6267–6274. Search in Google Scholar

O’Reilly 3rd, C. A., Tushman, M. L. (2004). The ambidextrous organization. Harvard Bus Rev., 82 (4), 74. Search in Google Scholar

Page, R. D. M. (1996). TreeView: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosc., 12, 357–358. Search in Google Scholar

Paz-Vinas, I., Blanchet, S. (2015). Dendritic connectivity shapes spatial patterns of genetic diversity: A simulation-based study. J. Evol. Biol., 28 (4), 986–994. Search in Google Scholar

Peakall, R. O. D., Smouse, P. E. (2006). GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes, 6 (1), 288–295. Search in Google Scholar

Pukk, L., Kuparinen, A., Leili, J., Gross, R., Vasemägi, A. (2013). Genetic and life-history changes associated with fisheries-induced population collapse. Evol. Appl., 6 (5), 749–760. Search in Google Scholar

Pukk, L., Gross, R., Vetemaa, M., Vasemägi, A. (2016). Genetic discrimination of brackish and freshwater populations of Eurasian perch (Perca fluviatilis L.) in the Baltic Sea drainage: Implications for fish forensics. Fisher. Res., 183, 155–164. Search in Google Scholar

Ragauskas, A., Butkauskas, D. Sruoga, A. (2014). Investigation into genetic diversity of perch inhabiting Lake Drūkšiai and other water bodies of Lithuania on the basis of mtDNA analysis. Zool. Ecol., 24 (2), 154–159. Search in Google Scholar

Richard, G.-F., Kerrest, A., Dujon, B. (2008). Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol. Mol. Biol., 72 (4), 686–727. Search in Google Scholar

Seeb, J. E., Carvalho, G., Hauser, L., Naish, K., Roberts, S. Seeb, L. W. (2011). Single-nucleotide polymorphism (SNP) discovery and applications of SNP genotyping in nonmodel organisms. Mol. Ecol. Res., 11, 1–8. Search in Google Scholar

Shinya, M., Tsuchinaga, T., Kitano, M., Yamada, Y., Ishikawa, M. (2000). Characterization of heavy metals and polycyclic aromatic hydrocarbons in urban highway runoff. Water Sci. Technol., 42 (7–8), 201–208. Search in Google Scholar

Slatkin, M. (1985). Rare alleles as indicators of gene flow. Evolution, 39 (1), 53–65. Search in Google Scholar

Sruoga, A., Butkauskas, D., Rashal, I. (2008). Evaluation of genetic diversity of perch (Perca fluviatilis) and pikeperch (Sander lucioperca) populations from Curonian lagoon and inshore waters of the Baltic Sea. Acta Biol. Univ. Daugavp., 8 (1), 81–88. Search in Google Scholar

Svanbäck, R., Eklöv, P. (2006). Genetic variation and phenotypic plasticity: Causes of morphological variation in Eurasian perch. Evol. Ecol. Res., 8 (1), 37–49. Search in Google Scholar

Škute, N. Oreha, J. (2016). Evaluation of some microsatellite markers variability in the study of genetic structure of vendace (Coregonus albula (L.) populations from Latvian lakes. Contemp. Probl. Ecol., 9 (2), 157–165. Search in Google Scholar

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P., Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes, 4 (3), 535–538. Search in Google Scholar

Wollebæk, J., Heggenes, J. Røed, K. H. (2011). Population connectivity: Dam migration mitigations and contemporary site fidelity in arctic char. BMC Evol. Biol., 11, 207. Search in Google Scholar

Ward, J. V., Stanford, J. A. (1983). The serial discontinuity concept of lotic ecosystems. In: Fontaine, T. D., Bartell, S. M. (eds.). Dynamics of Lotic Ecosystems. Ann Arbor Science, pp. 29–42. Search in Google Scholar

Wirth, T., Saint-Laurent, R., Bernatchez, L. (1999). Isolation and characterization of microsatellite loci in the walleye (Stizostedion vitreum), and cross-species amplification within the family Percidae. Mol. Ecol., 8 (11), 1960–1962. Search in Google Scholar

Yeh, F. C., Yang, R. C., Boyle, T. (1999). POPGENE 32-version 1.31. Population Genetics Software. Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo