1. bookVolume 73 (2019): Issue 2 (May 2019)
Journal Details
License
Format
Journal
First Published
14 Sep 2008
Publication timeframe
6 times per year
Languages
English
Copyright
© 2020 Sciendo

Influence of Antibiotic-Impregnated Biomaterials on Inflammatory Cytokines

Published Online: 07 Apr 2019
Page range: 177 - 184
Received: 07 Nov 2018
Accepted: 03 Jan 2019
Journal Details
License
Format
Journal
First Published
14 Sep 2008
Publication timeframe
6 times per year
Languages
English
Copyright
© 2020 Sciendo

Local antibiotic therapy has several advantages over systemic antibiotic treatment. Using antibiotics in local biomaterial systems can reduce the number of microorganisms that can adhere to implanted biomaterials. In this in vitro study, antibacterial properties of hydroxyapatite biomaterials impregnated with antibiotics and biodegradable polymers were examined. The antibacterial efficiency of hydroxyapatite biomaterials impregnated with antibiotics and biodegradable polymers against Staphylococcus epidermidis and Pseudomonas aeruginosa was studied by evaluating the expression of inflammatory cytokines (Interleukin-10 (IL-10), -defensin-2 and tumour necrosis factor alpha (TNF- )) in tissue surrounding implanted biomaterials in vivo. The results of this study demonstrated that hydroxyapatite biomaterials impregnated with antibiotics and biodegradable polymers had a prolonged antibacterial effect in comparison to biomaterials without biodegradable polymers. Surrounding tissue displayed higher levels of inflammatory cytokines when implanted biomaterials had not been previously impregnated with antibiotics.

Keywords

Antoci, V. Jr., Adams, C. S., Parvizi, J., Davidson, H. M., Composto, R. J., Freeman, T. A., Wickstrom, E., Ducheyne, P., Jungkind, D., Shapiro, I. M.,, Hickok, N. J. (2008). The inhibition of Staphylococcus epidermidis biofilm formation by vancomycin-modified titanium alloy and implications for the treatment of periprosthetic infection. Biomaterials, 29, 4684–4690.Search in Google Scholar

Aybar, Y., Ozaras, R., Besirli, K., Engin, E., Karabulut, E., Salihoglu, T., Mete, B., Tabak, F., Mert, A., Tahan, G., Yilmaz, M. H., Ozturk, R. (2012). Efficacy of tigecycline and vancomycin in experimental catheter-related Staphylococcus epidermidis infection: microbiological and electron microscopic analysis of biofilm. Int. J. Antimicrob. Agents, 39, 338–342.Search in Google Scholar

Bottner, F., Wegner, A., Winkelmann, W., Becker, K., Erren, M., Götze, C. (2007). Interleukin-6, procalcitonin and TNF-alpha: Markers of peri-prosthetic infection following total joint replacement. J. Bone Joint Surg. Br., 89, 94–99.Search in Google Scholar

Chai, F., Hornez, J. C., Blanchemain, N., Neut, C., Descamps, M., Hildebrand, H. F. (2007). Antibacterial activation of hydroxyapatite (HA) with controlled porosity by different antibiotics. Biomol. Eng., 24 (5), 510–514.Search in Google Scholar

Drenkard, E. (2003). Antimicrobial resistance of Pseudomonas aeruginosa bioilms. Microbes Infect., 5 (13), 1213–1219.Search in Google Scholar

Duarte, P. M., de Mendonça, A. C., Máximo, M. B., Santos, V. R., Bastos, M. F., Nociti Júnior, F. H. (2009). Differential cytokine expressions affect the severity of peri-implant disease. Clin. Oral Implants Res., 20, 514–520.Search in Google Scholar

Gretzer, C., Emanuelsson, L., Liljensten, E., Thomsen, P. (2006). The inflammatory cell influx and cytokines changes during transition from acute inflammation to fibrous repair around implanted materials. J. Biomater. Sci. Polym. Ed., 17 (6), 669–687.Search in Google Scholar

Gristina, A. G., (1987). Biomaterial-centered infection: Microbial adhesion versus tissue integration. Science, 237 (4822), 1588–1595.Search in Google Scholar

Gollwitzer, H., Dombrowski, Y., Prodinger, P. M., Peric, M., Summer, B., Hapfelmeier, A., Saldamli, B., Pankow, F., von Eisenhart-Rothe, R., Imhoff, A. B., Schauber, J., Thomas, P., Burgkart, R., Banke, I. J. (2013). Antimicrobial peptides and proinflammatory cytokines in periprosthetic joint infection. J. Bone Joint Surg., 95, 644–651.Search in Google Scholar

Guillaume, O., Garric, X., Lavigne, J. P., Van Den Berghe, H., Coudane, J. (2012). Multilayer, degradable coating as a carrier for the sustained release of antibiotics: Preparation and antimicrobial efficacy in vitro. J. Control Release, 162 (3), 492–501.Search in Google Scholar

Gul, M., Yasim, A., Aral, M., (2012). The levels of cytokines in rats following the use of prophylactic agents in vascular graft infection. Bratisl. Lek. Listy, 111 (6), 316–320.Search in Google Scholar

Guo, Y. J., Long, T., Chen, W., Ning, C., Zhu, Z. A., Guo, Y. P. (2013). Bactericidal property and biocompatibility of gentamicin-loaded mesoporous carbonated hydroxyapatite microspheres. Mater. Sci. Eng. C Mater. Biol. Appl., 33 (7), 3583–3591.Search in Google Scholar

Harder, J., Bartels, J., Christophers, E., Schroder, J. M. (2001). Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J. Biol. Chem., 276, 5707–5713.Search in Google Scholar

Hanssen, A. D. (2005). Local antibiotic delivery vehicles in the treatment of musculoskeletal infection. Clin. Orthop. Relat. Res., 437, 91–96Z.Search in Google Scholar

Hodgson, S. D., Greco-Stewart, V., Jimenez, C. S., Sifri, C. D., Brassinga, A. K. C., Ramirez-Arcos, S. (2014). Enhanced pathogenicity of biofilm-negative Staphylococcus epidermidis isolated from platelet preparations. Transfusion, 54 (2), 461–470.Search in Google Scholar

Hughes, S. P., Anderson, F. M. (1999). Infection in the operating room. J. Bone Joint Surg. Br., 81, 754–755Search in Google Scholar

Kroica, J., Skadins, I., Salma, I., Reinis, A., Sokolova, M., Rostoka D., Berza N. (2016). Antibacterial efficiency of hydroxyapatite biomaterials with biodegradable polylactic acid and polycaprolactone polymers saturated with antibiotics. Proc. Latvian Acad. Sci., Section B, 70 (4), 220–226.Search in Google Scholar

Lai, Y., Cogen, A. L., Radek, K. A., Park, H. J., Macleod, D. T., Leichtle, A., Ryan, A. F., Di Nardo, A., Gallo, R. L. (2010). Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J. Invest. Dermatol.,130 (9), 2211–2221.Search in Google Scholar

Li, Z., Kong, W., Li, X., Xu, C., He, Y., Gao, J., Ma, Z., Wang, X., Zhang, Y., Xing, F., Li, M., Liu, Y. (2011). Antibiotic-containing biodegradable bead clusters with porous PLGA coating as controllable drug-releasing bone fillers. J. Biomater. Sci. Polym. Ed., 22 (13), 1713–1731.Search in Google Scholar

Locs, J., Zalite, V., Berzina-Cimdina, L., Sokolova, M. (2013). Ammonium hydrogen carbonate provided viscous slurry foaming — a novel technology for the preparation of porous ceramics. J. Eur. Ceram. Soc., 33, 3437–3443.Search in Google Scholar

Lyndon, B. J., Birbilis, B. N., (2014). Metallic implant drug/device combinations for controlled drug release in orthopaedic applications. J. Control Release, 179, 63–75.Search in Google Scholar

McCann, M. T., Gilmore, B. F., Gorman, S. P. (2008). Staphylococcus epidermidis device-related infections: Pathogenesis and clinical management. JPP, 60, 1551–1571.Search in Google Scholar

Moore, K. W., de Waal Malefyt, R., Coffman, R. L., O’Garra, A. (2001). Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol., 19, 683–765.Search in Google Scholar

Rousset, F., Garcia, E., Defrance, T., Péronne, C., Vezzio, N., Hsu, D. H., Kastelein, R., Moore, K. W., Banchereau, J. (1992). Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc. Natl. Acad. Sci., 89 (5), 1890–1893.Search in Google Scholar

Sawamura, D., Goto, M., Shibaki, A., Akiyama, M., McMillan, J.R., Abiko, Y., Shimizu, H. (2005). Beta defensin-3 engineered epidermis shows highly protective effect for bacterial infection. Gene Ther.,12, 857–861.Search in Google Scholar

Schutte, R. J., Xie, L., Klitzman, B., Reichert, W. M., (2009). In vivo cytokine-associated responses to biomaterials. Biomaterials,30 (2), 160–168.Search in Google Scholar

Shindo, S., Ogata K., Kubota, K., Kojima, A., Kobayashi, M., Tada, Y., Okuyama, K., (2003). Vascular prosthetic implantation is associated with prolonged inflammation following aortic aneurysm surgery. J. Artif. Organs,6 (3), 173–178.Search in Google Scholar

Skadins, I., Kroica, J., Salma, I., Reinis, A., Sokolova, M., Rostoka, D. (2017). The level of inflammatory cytokines and antimicrobial peptides after composite material implantation and contamination with bacterial culture. Key Eng. Mater., 721, 245–250.Search in Google Scholar

Sokolova, M., Putniņš, A., Kreicbergs, I., Ločs, J. (2014). Scale-up of wet precipitation calcium phosphate synthesis. Key Eng. Mater., 604, 216–219.Search in Google Scholar

Sun, X., Wang, D., Yu, H., Hu, L. (2010). Serial cytokine levels during wound healing in rabbit maxillary sinus mucosa. Acta Oto-Laryngologica, 130, 607–613.Search in Google Scholar

Suska, F., Gretzer, C., Esposito, M., Emanuelsson, L., Wennerberg, A., Tengvall, P., Thomsen, P. (2005). In vivo cytokine secretion and NF-kappaB activation around titanium and copper implants. Biomaterials, 26 (5), 519–527.Search in Google Scholar

Vassena, C., Fenu, S., Giuliani, F., Fantetti, L., Roncucci, G., Simonutti, G., Romanò, C. L., De Francesco, R., Drago, L. (2014). Photodynamic antibacterial and antibiofilm activity of RLP068/Cl against Staphylococcus aureus and Pseudomonas aeruginosa forming biofilms on prosthetic material. Int. J. Antimicrob. Agents, 44 (1), 47–55.Search in Google Scholar

Zhang, J. M., Jianxiong, A. (2007). Cytokines, inflammation and pain. Int. Anesthesiol. Clin., 45 (2), 27–37.Search in Google Scholar

Plan your remote conference with Sciendo