1. bookVolume 73 (2019): Issue 2 (May 2019)
Journal Details
License
Format
Journal
First Published
14 Sep 2008
Publication timeframe
6 times per year
Languages
English
access type Open Access

Prognostic Utility Of Novel Biomarkers in Aortic Valve Stenosis

Published Online: 07 Apr 2019
Page range: 100 - 106
Received: 05 Nov 2018
Accepted: 03 Jan 2019
Journal Details
License
Format
Journal
First Published
14 Sep 2008
Publication timeframe
6 times per year
Languages
English

The aim of the present study was to evaluate plasma levels of chemerin, myeloperoxidase (MPO), fibroblast growth factor-21 (FGF-21), thioredoxin reductase-1 (TrxR1), and matrix metallopeptidase-9 (MMP-9) in acquired aortic valve (AoV) stenosis patients to determine correlations between the studied cellular factors, and also clarify the predictive values of these factors as biomarkers in AoV stenosis. AoV stenosis patients were classified into three groups: 17 patients with mild AoV stenosis; 19 with moderate and 15 with severe AoV stenosis. Twenty-four subjects without AoV stenosis were selected as a control group. Our findings suggest that AoV stenosis might be associated with increased chemerin, TrxR1, MPO, and FGF-21 levels in plasma. Moreover, these factors and also MMP-9 already reached statistically significantly elevated levels in the early stages of AoV stenosis, but MPO levels were more pronounced in patients with moderate and severe AoV stenosis. Chemerin was correlated with all of the studied cytokines; TrxR1 and MMP-9 were correlated with several other cellular factors. Our findings (by ROC analysis) suggest that MPO and chemerin might serve as specific and sensitive biomarkers for AoV stenosis without grading the severity, but, in relation to mild AoV stenosis, TrxR1, FGF-21, and MMP-9 also reached good or moderate levels as biomarkers. The cellular factors might serve as novel diagnostic and prognostic biomarkers in AoV stenosis patients, while chemerin and MPO may be more powerful.

Keywords

Akahori, H., Tsujino, T., Masuyama, T., Ishihara, M. (2018). Mechanisms of aortic stenosis. J. Cardiol., 71 (3), 215–220.Search in Google Scholar

Ali, O. A., Chapman, M., Nguyen, T. H., Chirkov, Y. Y., Heresztyn, T., Mundisugih, J., Horowitz, J. D. (2014). Interactions between inflammatory activation and endothelial dysfunction selectively modulate valve disease progression in patients with bicuspid aortic valve. Heart, 100 (10), 800–805.Search in Google Scholar

Chen, B., Meng, L., Shen, T., Gong, H., Qi, R., Zhao, Y., Sun, J., Bao, L., Zhao, G. (2017). Thioredoxin attenuates oxidized low-density lipoprotein induced oxidative stress in human umbilical vein endothelial cells by reducing NADPH oxidase activity. Biochem. Biophys. Res. Commun., 490 (4), 1326–1333.Search in Google Scholar

Cheng, P., Zhang, F., Yu, L., Lin, X., He, L., Li, X., Lu, X., Yan, X., Tan, Y., Zhang, C. (2016). Physiological and pharmacological roles of FGF21 in cardiovascular diseases. J. Diabetes Res., 2016, 1540267.Search in Google Scholar

Couchie, D., Vaisman, B., Abderrazak, A., Mahmood, D. F. D., Hamza, M. M., Canesi, F., Diderot, V., El Hadri, K., Nègre-Salvayre, A., Le Page, A., Fulop, T., Remaley, A. T., Rouis, M. (2017). Human plasma thioredoxin-80 increases with age and in ApoE-/-mice induces inflammation, angiogenesis, and atherosclerosis. Circulation, 136 (5), 464–475.Search in Google Scholar

El Hadri, K., Mahmood, D. F., Couchie, D., Jguirim-Souissi, I., Genze, F., Diderot, V., Syrovets, T., Lunov, O., Simmet, T., Rouis, M. (2012). Thioredoxin-1 promotes anti-inflammatory macrophages of the M2 phenotype and antagonizes atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 32 (6), 1445–1452.Search in Google Scholar

Fondard, O., Detaint, D., Iung, B., Choqueux, C., Adle-Biassette, H., Jarraya, M., Hvass, U., Couetil, J. P., Henin, D., Michel, J. B., Vahanian, A., Jacob, M. P. (2005). Extracellular matrix remodelling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur. Heart J., 26 (13), 1333–1341.Search in Google Scholar

Heymans, S., Schroen, B., Vermeersch, P., Milting, H., Gao, F., Kassner, A., Gillijns, H., Herijgers, P., Flameng, W., Carmeliet, P., Van de Werf, F., Pinto, Y. M., Janssens, S. (2005). Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation, 112 (8), 1136–1144.Search in Google Scholar

Ji, Q., Lin, Y., Liang, Z., Yu, K., Liu, Y., Fang, Z., Liu, L., Shi, Y., Zeng, Q., Chang, C., Chai, M., Zhou, Y. (2014). Chemerin is a novel biomarker of acute coronary syndrome but not of stable angina pectoris. Cardiovasc. Diabetol., 13, 145.Search in Google Scholar

Kammerer, A., Staab, H., Herberg, M., Kerner, C., Klöting, N., Aust, G. (2018). Increased circulating chemerin in patients with advanced carotid stenosis. BMC Cardiovasc. Disord., 18 (1), 65.Search in Google Scholar

Kaur, J. L., Mattu, H. S., Chatha, K., Randeva, H. S. (2018). Chemerin in human cardiovascular disease. Vascul. Pharmacol., 110, 1–6.Search in Google Scholar

Khan, A. A., Alsahli, M. A., Rahmani, A. H. (2018). Myeloperoxidase as an active disease biomarker: Recent biochemical and pathological perspectives. Med. Sci. (Basel), 6 (2). pii: E33.Search in Google Scholar

Kim, J. B., Kobayashi, Y., Kuznetsova, T., Moneghetti, K. J., Brenner, D. A., O’Malley, R., Dao, C., Wu, J. C., Fischbein, M., Craig Miller, D., Yeung, A. C., Liang, D., Haddad, F., Fearon, W. F. (2018). Int. J. Cardiol., 270, 83–88.Search in Google Scholar

Kunimoto, H., Kazama, K., Takai, M., Oda, M., Okada, M., Yamawaki, H. (2015). Chemerin promotes the proliferation and migration of vascular smooth muscle and increases mouse blood pressure. Amer. J. Physiol. Heart Circ. Physiol., 309 (5), H1017–H1028.Search in Google Scholar

Lenart-Lipińska, M., Duma, D., Hałabiś, M., Dziedzic, M., Solski, J. (2016). Fibroblast growth factor 21 — a key player in cardiovascular disorders? Horm. Mol. Biol. Clin. Investig., 30 (2).Search in Google Scholar

Lurins, J., Lurina, D., Tretjakovs, P., Mackevics,V., Lejnieks, A., Rapisarda, V., Baylon, V. (2018). Increased serum chemerin level to predict early onset of aortic valve stenosis. Biomed. Rep., 8 (1), 31–36.Search in Google Scholar

Münch, J., Avanesov, M., Bannas, P., Säring, D., Krämer, E., Mearini, G., Carrier, L., Suling, A., Lund, G., Patten, M. (2016). Serum matrix metalloproteinases as quantitative biomarkers for myocardial fibrosis and sudden cardiac death risk stratification in patients with hypertrophic cardiomyopathy. J. Card. Fail., 22 (10), 845–850.Search in Google Scholar

Nussbaum, C., Klinke, A., Adam, M., Baldus, S., Sperandio, M. (2013). Myeloperoxidase: A leukocyte-derived protagonist of inflammation and cardiovascular disease. Antioxid. Redox Signal, 18 (6), 692–713.Search in Google Scholar

Perrotta, I., Sciangula, A., Aquila, S., Mazzulla, S. (2016). Matrix metalloproteinase-9 expression in calcified human aortic valves: A histopathologic, immunohistochemical, and ultrastructural study. Appl. Immunohistochem. Mol. Morphol., 24 (2), 128–137.Search in Google Scholar

Planavila, A., Redondo-Angulo, I., Ribas, F., Garrabou, G., Casademont, J., Giralt, M., Villarroya, F. (2015a). Fibroblast growth factor 21 protects the heart from oxidative stress. Cardiovasc. Res., 106 (1), 19–31.Search in Google Scholar

Planavila, A., Redondo-Angulo, I., Villarroya, F. (2015b). FGF21 and cardiac physiopathology. Front. Endocrinol. (Lausanne), 6, 133.Search in Google Scholar

Savic-Radojevic, A., Pljesa-Ercegovac, M., Matic, M., Simic, D., Radovanovic, S., Simic, T. (2017). Novel biomarkers of heart failure. Adv. Clin. Chem., 79, 93–152.Search in Google Scholar

Spiroglou, S. G., Kostopoulos, C. G., Varakis, J. N., Papadaki, H. H. (2010). Adipokines in periaortic and epicardial adipose tissue: Differential expression and relation to atherosclerosis. J. Atheroscler. Thromb., 17 (2), 115–130.Search in Google Scholar

Stein, J. H, Korcarz, C. E., Hurst, R. T., Lonn, E., Kendall, C. B., Mohler, E. R., Najjar, S. S., Rembold, C. M., Post, W. S.; American Society of Echocardiography Carotid Intima-Media Thickness Task Force (2008). Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. J. Amer. Soc. Echocardiogr., 21, 93–111.Search in Google Scholar

Vahanian, A., Iung, B. (2012). The new ESC/EACTS guidelines on the management of valvular heart disease. Arch. Cardiovasc. Dis., 105, 465–467.Search in Google Scholar

van der Veen, B. S., de Winther, M. P., Heeringa, P. (2009). Myeloperoxidase: Molecular mechanisms of action and their relevance to human health and disease. Antioxid. Redox Signal, 11 (11), 2899–2937.Search in Google Scholar

Wada, S., Sugioka, K., Naruko, T., Kato, Y., Shibata, T., Inoue, T., Inaba, M., Ohsawa, M., Yoshiyama, M., Ueda, M. (2013). Myeloperoxidase and progression of aortic valve stenosis in patients undergoing hemodialysis. J. Heart Valve Dis., 22 (5), 640–647.Search in Google Scholar

Yamawaki, H., Kameshima, S., Usui, T., Okada, M., Hara. Y. (2012). A novel adipocytokine, chemerin exerts anti-inflammatory roles in human vascular endothelial cells. Biochem. Biophys. Res. Commun., 423 (1), 152–157.Search in Google Scholar

Yao, Q., Song, R., Ao, L., Cleveland, J. C Jr., Fullerton, D. A., Meng, X. (2017). Neurotrophin 3 upregulates proliferation and collagen production in human aortic valve interstitial cells: a potential role in aortic valve sclerosis. Amer. J. Physiol. Cell Physiol., 312 (6), C697–C706.Search in Google Scholar

Zhang, H., Liu, Q., Lin, J. L., Wang, Y., Zhang, R. X., Hou, J. B., Yu, B. (2018). Recombinant human thioredoxin-1 protects macrophages from oxidized low-density lipoprotein-induced foam cell formation and cell apoptosis. Biomol. Ther. (Seoul),26 (2), 121–129.Search in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo