Cite

1. R. Orndorff :Water lubricated rubber bearings, history and new developments, Nav Eng J, 1985, pp. 39–52,.10.1111/j.1559-3584.1985.tb01877.xSearch in Google Scholar

2. H. Hirani and M. Verma: Tribological study of elastomeric bearings for marine propeller shaft system, Tribol. Int., vol. 42, 2009, No. 2, pp. 378–390.10.1016/j.triboint.2008.07.014Search in Google Scholar

3. W. Litwin and C. Dymarski: Experimental research on water-lubricated marine stern tube bearings in conditions of improper lubrication and cooling causing rapid bush wear, Tribol. Int., vol. 95, 2016, pp. 449–455,.10.1016/j.triboint.2015.12.005Search in Google Scholar

4. W. Litwin : Properties comparison of rubber and three layer PTFE-NBR-bronze water lubricated bearings with lubricating grooves along entire bush circumference based on experimental tests, Tribol. Int., vol. 90, 2015, pp. 404–411.10.1016/j.triboint.2015.03.039Search in Google Scholar

5. B. J. Blair: Getting the most from your bearings. World Pumps, vol. 2016,No. 7–8, pp. 36–40,.10.1016/S0262-1762(16)30169-9Search in Google Scholar

6. M. Wodtke and M. Wasilczuk: Evaluation of apparent Young’s modulus of the composite polymer layers used as sliding surfaces in hydrodynamic thrust bearings, Tribol. Int., vol. 97, 2016, pp. 244–252.10.1016/j.triboint.2016.01.040Search in Google Scholar

7. W. Litwin, A. Olszewski, and M. Wodtke: Influence of Shaft Misalignment on Water Lubricated Turbine Sliding Bearings with Various Bush Modules of Elasticity. Key Eng. Mater., vol. 490, 2011, pp. 128–134,10.4028/www.scientific.net/KEM.490.128Search in Google Scholar

8. W. Litwin: Water lubricated marine stern tube bearings – Attempt at estimating hydrodynamic capacity,” in Proceedings of the ASME/STLE International Joint Tribology Conference 2009, IJTC2009, 2010.10.1115/IJTC2009-15068Search in Google Scholar

9. W. Litwin: Influence of local bush wear on water lubricated sliding bearing load carrying capacity. Tribol. Int., vol. 103, 2016.10.1016/j.triboint.2016.06.044Search in Google Scholar

10. Q. Hongling, Z. Xincong, X. Chuntao, W. Hao, and L. Zhenglin: Tribological Performance of a Polymer Blend of NBR Used for Stern Bearings, 2012, pp. 133–139,.10.2174/1874155X01206010133Search in Google Scholar

11. Y. Wang, X. Shi, and L. Zhang,: Experimental and numerical study on water-lubricated rubber bearings, Ind. Lubr. Tribol. Exp., vol. 2, 2014, no. 51175275, pp. 282–288,.10.1108/ILT-11-2011-0098Search in Google Scholar

12. M. Del Din and E. Kassfeldt: Wear characteristics with mixed lubrication conditions in a full scale journal bearing, Wear, vol. 232, 1999, no. 2, pp. 192–198,10.1016/S0043-1648(99)00145-3Search in Google Scholar

13. D. L. Cabrera, N. H. Woolley, D. R. Allanson, and Y. D Tridimas: Film pressure distribution in water-lubricated rubber journal bearings, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 219, 2005, no. 2, pp. 125–132,10.1243/135065005X9754Search in Google Scholar

14. Y. Zhimin et al.: Study on tribological and vibration performance of a new UHMWPE/graphite/NBR water lubricated bearing material, Wear, vol. 332–333, 2015, pp. 872–878.10.1016/j.wear.2014.12.054Search in Google Scholar

15. R. Colsher, I. Anwar, J. Dunfee, and M. Kandl: Development of Water Lubricated Bearing for Steam Turbine Application, J. Lubr. Technol., vol. 105, 1983, no. 3, p. 318.10.1115/1.3254600Search in Google Scholar

16. G. Gao, Z. Yin, D. Jiang, and X. Zhang: Numerical analysis of plain journal bearing under hydrodynamic lubrication by water, Tribol. Int., vol. 75, 2014, pp. 31–38.10.1016/j.triboint.2014.03.009Search in Google Scholar

17. A.-F. Cristea, J. Bouyer, M. Fillon, and M. D. Pascovici; Transient Pressure and Temperature Field Measurements of a Lightly Loaded Circumferential Groove Journal Bearing, Tribol. Trans., vol. 54, 2011, no. 5, pp. 806–823.10.1080/10402004.2011.604758Search in Google Scholar

18. R. Gawarkiewicz and M. Wasilczuk: Wear measurements of self-lubricating bearing materials in small oscillatory movement, Wear, vol. 263, 2007, no. 1–6 SPEC. ISS., pp. 458–462.10.1016/j.wear.2006.12.060Search in Google Scholar

19. A. Olszewski, M. Wodtke, and P. Hryniewicz: Experimental Investigation of Prototype Water-Lubricated Compliant Foil Bearings, Key Eng. Mater., vol. 490, 2011, pp. 97–105.10.4028/www.scientific.net/KEM.490.97Search in Google Scholar

20. M. Wodtke, A. Schubert, M. Fillon, M. Wasilczuk, and P. Pajaczkowski: Large hydrodynamic thrust bearing: Comparison of the calculations and measurements, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 228, 2014, no. 9, pp. 974–983.10.1177/1350650114528317Search in Google Scholar

21. M. Mehdizadeh and F. Khodabakhshi: An investigation into failure analysis of interfering part of a steam turbine journal bearing, Case Stud. Eng. Fail. Anal., vol. 2, 2014, no. 2, pp. 61–68,.10.1016/j.csefa.2014.04.001Search in Google Scholar

22. W. Wieleba: The Mechanism of Tribological Wear of Thermoplastic Materials, Arch. Civ. Mech. Eng., Vol. VII, 2007, No. 4.10.1016/S1644-9665(12)60236-2Search in Google Scholar

23. J. Takabi and M. M. Khonsari: On the thermally-induced seizure in bearings: A review, Tribol. Int., vol. 91, 2015, pp. 118–130.10.1016/j.triboint.2015.05.030Search in Google Scholar

24. Q. Wang : Seizure failure of journal-bearing conformal contacts, Wear, vol. 210, 1997, no. 1–2, pp. 8–16.10.1016/S0043-1648(97)00064-1Search in Google Scholar

25. D. Garner, A. L.-P. of the 13th, and undefined 1984, Temperature measurements in fluid film bearings, oaktrust. library.tamu.edu.Search in Google Scholar

26. P. De Choudhury and E. W. Barth: A Comparison of Film Temperatures and Oil Discharge Temperature for a Tilting-Pad Journal Bearing, J. Tribol., vol. 103, 1981, no. 1, p. 115.10.1115/1.3251598Search in Google Scholar

27. S. Strzelecki, Z. S.- Tribologia, and undefined 2011, Operating temperatures of the bearing system of grinder spindle, t.tribologia.eu.Search in Google Scholar

28. D. G. Lee and S. S. Kim: Failure analysis of asbestos-phenolic composite journal bearing, Compos. Struct., vol. 65, 2004, no. 1, pp. 37–46.10.1016/j.compstruct.2003.10.004Search in Google Scholar

29. S. B. Glavatskih and M. Fillon: TEHD Analysis of Thrust Bearings With PTFE-Faced Pads, J. Tribol., vol. 128, 2006, no. 1, p. 49.10.1115/1.1843833Search in Google Scholar

30. O. Nosko, T. Nagamine, A. L. Nosko, A. M. Romashko, H. Mori, and Y. Sato: Measurement of temperature at sliding polymer surface by grindable thermocouples, Tribol. Int., vol. 88, 2015, pp. 100–106.10.1016/j.triboint.2015.03.015Search in Google Scholar

31. M. Hoić, M. Hrgetić, and J. Deur: Design of a pin-on-disc-type CNC tribometer including an automotive dry clutch application, Mechatronics, vol. 40, 2016, pp. 220–232.10.1016/j.mechatronics.2016.10.016Search in Google Scholar

32. E. Ciulli, P. Forte, M. Libraschi, and M. Nuti : Set-up of a novel test plant for high power turbomachinery tilting pad journal bearings, Tribol. Int., vol. 127, no. November 2017, pp. 276–287, 2018.10.1016/j.triboint.2018.06.014Search in Google Scholar

33. P. Śliwiński : The Influence of Water and Mineral Oil On Mechanical Losses in the Displacement Pump for Offshore and Marine Applications: Polish Marit. Res., vol. 25, 2018, no. s1, pp. 178–188.10.2478/pomr-2018-0040Search in Google Scholar

34. A. Dadouche, M. Fillon, and J. . Bligoud: Experiments on thermal effects in a hydrodynamic thrust bearing, Tribol. Int., vol. 33, 2000, no. 3–4, pp. 167–174.10.1016/S0301-679X(00)00023-2Search in Google Scholar

35. B. Remy, B. Bou-Saïd, and T. Lamquin : Fluid inertia and energy dissipation in turbocharger thrust bearings, Tribol. Int., vol. 95, 2016, pp. 139–146.10.1016/j.triboint.2015.11.014Search in Google Scholar

36. S. B. Glavatskih: A method of temperature monitoring in fluid film bearings, Tribol. Int., vol. 37, 2004, no. 2, pp. 143–148.10.1016/S0301-679X(03)00050-1Search in Google Scholar

37. T. W. Kerlin and M. Johnson: Practical Thermocouple Thermometry (2nd Edition). ISA, 2012.Search in Google Scholar

38. W. Dai, B. Kheireddin, H. Gao, and H. Liang : Roles of nanoparticles in oil lubrication, Tribol. Int., vol. 102, 2016, pp. 88–98.10.1016/j.triboint.2016.05.020Search in Google Scholar

39. J. Duchowski : Examination of journal bearing filtration requirements, Lubr. Eng., vol. 09, 1998, pp. 1–9.Search in Google Scholar

40. J. Duchowski, H. International, and J. Duchowski: Filtration requirements for journal bearings exposed to different contaminant levels, Lubr. Eng., vol. 06, 2002, no. July, pp. 34–39.Search in Google Scholar

41. D. Hargreaves and S. C. Sharma: Effects of solid contaminants on journal bearing performance, Proceedings of the 2nd World Tribology Congress, 3-7 September 2001. pp. 237–240.Search in Google Scholar

42. A. Dadouche and M. J. Conlon: Operational performance of textured journal bearings lubricated with a contaminated fluid, Tribol. Int., vol. 93, 2016, pp. 377–389.10.1016/j.triboint.2015.09.022Search in Google Scholar

43. M. M. Khonsari and E. R. Booser: Effect of contamination on the performance of hydrodynamic bearings, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol., vol. 220, 2006, no. 5, pp. 419–428.10.1243/13506501J00705Search in Google Scholar

44. A. Akchurin, R. Bosman, P. M. Lugt, and M. van Drogen: Analysis of Wear Particles Formed in Boundary-Lubricated Sliding Contacts, Tribol. Lett., vol. 63, 2016, no. 2, pp. 1–14.10.1007/s11249-016-0701-zSearch in Google Scholar

45. A. Akchurin, R. Bosman, and P. M. Lugt: Generation of wear particles and running-in in mixed lubricated sliding contacts, Tribol. Int., vol. 110, 2017, no. February, pp. 201–208.10.1016/j.triboint.2017.02.019Search in Google Scholar

46. A. Akchurin, R. Bosman, and P. M. Lugt: A Stress-Criterion-Based Model for the Prediction of the Size of Wear Particles in Boundary Lubricated Contacts, Tribol. Lett., vol. 64, 2016, no. 3, pp. 1–12.10.1007/s11249-016-0772-xSearch in Google Scholar

47. G. Pintaude: Characteristics of Abrasive Particles and Their Implications on Wear, New Tribol. Ways, no. April 2011.10.5772/14618Search in Google Scholar

48. C. Q. Yuan, Z. Peng, X. C. Zhou, and X. P. Yan : The characterization of wear transitions in sliding wear process contaminated with silica and iron powder, Tribol. Int., vol. 38, 2005, no. 2, pp. 129–143.10.1016/j.triboint.2004.06.007Search in Google Scholar

49. L. Peña-Parás et al.: Effects of substrate surface roughness and nano/micro particle additive size on friction and wear in lubricated sliding, Tribol. Int., vol. 119, 2018, no. February 2017, pp. 88–98.10.1016/j.triboint.2017.09.009Search in Google Scholar

50. S. M. Park, G. H. Kim, and Y. Z. Lee: Investigation of the wear behaviour of polyacetal bushings by the inflow of contaminants, Wear, vol. 271, 2011, no. 9–10, pp. 2193–2197.10.1016/j.wear.2010.12.033Search in Google Scholar

51. E. Szymczak and D. Burska : Charakterystyka rozkładu wielkości cząstek in situ w strefie rozpływu wód Wisły (Zatoka Gdańska) (in Polish). ?? pp. 1–2, 2014.Search in Google Scholar

52. M. Damrat, A. Zaborska, and M. Zajaczkowski: Sedimentation from suspension and sediment accumulation rate in the River Vistula prodelta, Gulf of Gdańsk (Baltic Sea), Oceanologia, vol. 55, 2013, no. 4, pp. 937–950.10.5697/oc.55-4.937Search in Google Scholar

53. I. Geologiczny and I. Geologii ?? : Litologia i skład mineralny osadów z dna Basenu Gdańskiego (in Polish), ?? vol. 313, 1980, no. 2.Search in Google Scholar

54. T. Leipe and B. Sea : The kaolinite/chlorite clay mineral ratio in surface sediments of the southern Baltic Sea as an indicator for long distance transport of fine-grained material, Baltica, vol. 16, 2003, pp. 31–36.Search in Google Scholar

55. A. Ya and T. Yu : Revealing the influence of various factors on concentration and spatial distribution of suspended matter based on remote sensing data, Proc. SPIE, vol. 9638, 2015, pp. 1–12.Search in Google Scholar

56. Y. Solomonov: Experimental investigation of tribological characteristics of water-lubricated bearings materials on a pin-on-disk test rig, Yuriy Solomonov Master of Philosophy Thesis, The University of Adelaide School of Mechanical Engineering April 2014.Search in Google Scholar

57. C. L. Dong, C. Q. Yuan, X. Q. Bai, Y. Yang, and X. P. Yan: Study on wear behaviours for NBR/stainless steel under sand water-lubricated conditions, Wear, vol. 332–333, 2015, pp. 1012–1020.10.1016/j.wear.2015.01.009Search in Google Scholar

58. C. Yuan, Z. Guo, W. Tao, C. Dong, and X. Bai: Effects of different grain sized sands on wear behaviours of NBR/casting copper alloys, Wear, vol. 384–385, 2017, pp. 185–191.10.1016/j.wear.2017.02.019Search in Google Scholar

59. C. P. Gao et al.: Tribological behaviors of epoxy composites under water lubrication conditions, Tribol. Int., vol. 95, 2016, pp. 333–341.10.1016/j.triboint.2015.11.041Search in Google Scholar

60. S. Thörmann, M. Markiewicz, and O. von Estorff: On the stick-slip behaviour of water-lubricated rubber sealings, J. Sound Vib., vol. 399, 2017, pp. 151–168.10.1016/j.jsv.2017.03.021Search in Google Scholar

61. B. S. Mann and V. Arya : An experimental model for mixed friction during running-in, Wear, vol. 253, 2002, no. 5–6, pp. 541–549.10.1016/S0043-1648(02)00065-0Search in Google Scholar

62. L. Deleanu and C. Georgescu: Water lubrication of PTFE composites, Ind. Lubr. Tribol., vol. 67, 2015, no. 1, pp. 1–8.10.1108/ilt-11-2011-0095Search in Google Scholar

63. S. Chen et al.: Tribological properties of polyimide-modified UHMWPE for bushing materials of seawater lubricated sliding bearings, Tribol. Int., vol. 115, 2017, no. 126, pp. 470–476.10.1016/j.triboint.2017.06.011Search in Google Scholar

64. A. Ismailov, M. Järveläinen, and E. Levänen: Problematics of friction in a high-speed rubber-wheel wear test system: A case study of irregularly rough steel in water lubricated contact, Wear, vol. 408–409, 2018, no. December 2017, pp. 65–71.10.1016/j.wear.2018.05.002Search in Google Scholar

65. C. Dong, L. Shi, L. Li, X. Bai, C. Yuan, and Y. Tian : Stick-slip behaviours of water lubrication polymer materials under low speed conditions, Tribol. Int., vol. 106, 2017, no. October 2016, pp. 55–61.10.1016/j.triboint.2016.10.027Search in Google Scholar

66. S. Meicke and R. Paasch : Seawater lubricated polymer journal bearings for use in wave energy converters, Renew. Energy, vol. 39, 2012, no. 1, pp. 463–470.10.1016/j.renene.2011.08.041Search in Google Scholar

67. S. Jiang, Z. Guo, C. Yuan, A. Liu, and X. Bai : Study on the tribological properties of modified polyurethane material for water-lubricated stern bearing, J. Appl. Polym. Sci., vol. 135, 2018, no. 22, pp. 1–13.10.1002/app.46305Search in Google Scholar

68. J. Bouyer and M. Fillon : Experimental measurement of the friction torque on hydrodynamic plain journal bearings during start-up, Tribol. Int., vol. 44, 2011, no. 7–8, pp. 772–781.10.1016/j.triboint.2011.01.008Search in Google Scholar

69. Ł. Breńkacz and G. Żywica :The experimental identification of the dynamic coefficients for two hydrodynamic journal bearings, SIRM 2017, Schwingungen rotierenden Maschinen, vol. 24, 2017, no. 96, pp. 157–164.Search in Google Scholar

70. T. Dimond, R. D. Rockwell, P. N. Sheth, and P. E. Allaire: A New Fluid Film Bearing Test Rig for Oil and Water Bearings, Struct. Dyn. Parts A B, Vol. 5, 2008, pp. 1101–1110.10.1115/GT2008-50654Search in Google Scholar

71. N. Wang and Q. Meng : Research on wireless nondestructive monitoring method for film pressure of water-lubricated bearing, Ind. Lubr. Tribol., vol. 67, 2015, no. 4, pp. 349–358.10.1108/ILT-08-2014-0079Search in Google Scholar

72. N. Wang, Q. Meng, P. Wang, T. Geng, and X. Yuan: Experimental Research on Film Pressure Distribution of Water-Lubricated Rubber Bearing With Multiaxial Grooves, J. Fluids Eng., vol. 135, 2013, no. 8, p. 84501.10.1115/1.4024147Search in Google Scholar

73. S. Yamajo and F. Kikkawa: Development and Application of PTFE Compound Bearings, Dyn. Position. Conf., 2004.Search in Google Scholar

eISSN:
2083-7429
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other, Geosciences, Atmospheric Science and Climatology, Life Sciences