This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Santajit, Sirijan, and Nitaya Indrawattana. “Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens.” BioMed research international vol. 2016 (2016): 2475067. doi:10.1155/2016/2475067Search in Google Scholar
Ablakimova, Nurgul, et al. “Microbial Landscape and Antibiotic-Susceptibility Profiles of Microorganisms in Patients with Bacterial Pneumonia: A Comparative Cross-Sectional Study of COVID-19 and Non-COVID-19 Cases in Aktobe, Kazakhstan.” Antibiotics (Basel, Switzerland) vol. 12,8 1297. 8 Aug. 2023, doi:10.3390/antibiotics12081297Search in Google Scholar
Choby, J E et al. “Hypervirulent Klebsiella pneumoniae - clinical and molecular perspectives.” Journal of Internal Medicine vol. 287,3 (2020): 283-300. doi:10.1111/joim.13007Search in Google Scholar
Martin, Rebekah M, and Michael A Bachman. “Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae.” Frontiers in cellular and infection microbiology vol. 8 4. 22 Jan. 2018, doi:10.3389/fcimb.2018.00004Search in Google Scholar
Dong, Ning, et al. “Klebsiella species: Taxonomy, hypervirulence, and multidrug resistance.” EBioMedicine vol. 79 (2022): 103998. doi:10.1016/j.ebiom.2022.103998Search in Google Scholar
Wang, Guoying et al. “The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae.” International journal of environmental research and public health vol. 17,17 6278. 28 Aug. 2020, doi:10.3390/ijerph17176278Search in Google Scholar
Ramirez, Maria Soledad et al. “Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace.” Biomolecules vol. 10,5 720. 6 May. 2020, doi:10.3390/biom10050720Search in Google Scholar
Ramirez, Maria Soledad et al. “Carbapenemases: Transforming Acinetobacter baumannii into a Yet More Dangerous Menace.” Biomolecules vol. 10,5 720. 6 May. 2020, doi:10.3390/biom10050720Search in Google Scholar
Tang, Jiaxin, et al. “The Protective Role of Interleukin 17A in Acinetobacter baumannii Pneumonia Is Associated with Candida albicans in the Airway.” Infection and immunity vol. 91,1 (2023): e0037822. doi:10.1128/iai.00378-22Search in Google Scholar
Liu, Ai-Ran, et al. “Role of immunodeficiency in Acinetobacter baumannii associated pneumonia in mice.” Chinese Medical Journal vol. 133,18 (2020): 2161-2169. doi:10.1097/CM9.0000000000001027Search in Google Scholar
Hernandez, Antonio, et al. “INTRAPULMONARY TREATMENT WITH A NOVEL TLR4 AGONIST CONFERS PROTECTION AGAINST KLEBSIELLA PNEUMONIA.” Shock (Augusta, Ga.) vol. 58,4 (2022): 295-303. doi:10.1097/SHK.0000000000001977Search in Google Scholar
Li, Yanping et al. “Klebsiella pneumonia and Its Antibiotic Resistance: A Bibliometric Analysis.” BioMed research international vol. 2022 1668789. 6 Jun. 2022, doi:10.1155/2022/1668789Search in Google Scholar
Chen, I-Ren, et al. “Clinical characteristics and outcomes of 56 patients with pneumonia caused by carbapenemresistant Klebsiella pneumonia.” Journal of Global Antimicrobial Resistance vol. 25 (2021): 326-330. doi:10.1016/j. jgar.2021.03.028Search in Google Scholar
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, Paterson DL, Walker MJ. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev. 2020 May 13;33(3):e00181-19. Doi: 10.1128/CMR.00181-19. PMID: 32404435; PMCID: PMC7227449.Search in Google Scholar
Chang, Ko-Yun, et al. “Clinical Features and Antimicrobial Susceptibility of Pseudomonas aeruginosa and Acinetobacter baumannii Complex Isolates in Intensive Care Patients with Chronic Obstructive Pulmonary Disease and Community-Acquired Pneumonia in Taiwan.” International journal of chronic obstructive pulmonary disease vol. 16 1801-1811. 17 Jun. 2021, doi:10.2147/COPD.S311714Search in Google Scholar
Liang, C-A et al. “Antibiotic strategies and clinical outcomes in critically ill patients with pneumonia caused by carbapenemresistant Acinetobacter baumannii.” Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases vol. 24,8 (2018): 908. e1-908.e7. doi:10.1016/j.cmi.2017.10.033Search in Google Scholar
Zhou, Yangang, et al. “Clinical experience with tigecycline in treating hospital-acquired pneumonia caused by multidrug- resistant Acinetobacter baumannii.” BMC pharmacology & toxicology vol. 20,1 19. 25 Apr. 2019, doi:10.1186/s40360-019-0300-3Search in Google Scholar
Pei, Yongjian, et al. “Nomogram for predicting 90-day mortality in patients with Acinetobacter baumannii-caused hospital-acquired and ventilator-associated pneumonia in the respiratory intensive care unit.” The Journal of International Medical Research vol. 51,3 (2023): 3000605231161481. doi:10.1177/03000605231161481Search in Google Scholar
Russo, Alessandro, et al. “Efficacy of a Fosfomycin-Containing Regimen for Treatment of Severe Pneumonia Caused by Multidrug- Resistant Acinetobacter baumannii: A Prospective, Observational Study.” Infectious diseases and therapy vol. 10,1 (2021): 187-200. doi:10.1007/s40121-020-00357-8Search in Google Scholar
Jeong, Yun-Jeong, et al. “Prospective observational study of the impact of plasma colistin levels in patients with carbapenem-resistant Acinetobacter baumannii pneumonia.” Journal of Global Antimicrobial Resistance vol. 27 (2021): 315-323. doi:10.1016/j. jgar.2021.10.017Search in Google Scholar
Manfi Ahmed, S et al. “Immunological Evaluation of Individuals Infected with Acinetobacter baumannii.” Archives of Razi Institute vol. 77,5 1813-1819. 31 Oct. 2022, doi:10.22092/ARI.2022.357980.2126Search in Google Scholar
Komiya, Kosaku, et al. “Radiological patterns and prognosis in elderly patients with acute Klebsiella pneumoniae pneumonia: A retrospective study.” Medicine vol. 101,32 (2022): e29734. doi:10.1097/MD.0000000000029734Search in Google Scholar
Sreenath, K et al. “Coinfections with Other Respiratory Pathogens among Patients with COVID-19.” Microbiology spectrum vol. 9,1 (2021): e0016321. doi:10.1128/Spectrum.00163-21Search in Google Scholar
Zaidan, Noor et al. “Extensively Drug-Resistant Acinetobacter baumannii Nosocomial Pneumonia Successfully Treated with a Novel Antibiotic Combination.” Antimicrobial agents and chemotherapy vol. 65,11 (2021): e0092421. doi:10.1128/AAC.00924-21Search in Google Scholar
Falcone, Marco, et al. “Cefiderocol- Compared to Colistin-Based Regimens for the Treatment of Severe Infections Caused by Carbapenem-Resistant Acinetobacter baumannii.” Antimicrobial agents and chemotherapy vol. 66,5 (2022): e0214221. doi:10.1128/aac.02142-21Search in Google Scholar
Karakonstantis, Stamatis, et al. “Treatment options for K. pneumoniae, P. aeruginosa, and A. baumannii co-resistant to carbapenems, aminoglycosides, polymyxins, and tigecycline: an approach based on the mechanisms of resistance to carbapenems.” Infection vol. 48,6 (2020): 835-851. doi:10.1007/s15010-020-01520-6Search in Google Scholar
Bassetti, Matteo, et al. “New antibiotics for Gram-negative pneumonia.” European Respiratory Review: An Official Journal of the European Respiratory Society vol. 31,166 220119. 21 Dec. 2022, doi:10.1183/16000617.0119-2022Search in Google Scholar
Deng, Yanling, et al. “Sulbactam combined with tigecycline improves outcomes in patients with severe multidrug-resistant Acinetobacter baumannii pneumonia.” BMC Infectious Diseases vol. 22,1 795. 21 Oct. 2022, doi:10.1186/s12879-022-07778-5Search in Google Scholar
Pulingam, Thiruchelvi, et al. “Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome.” European Journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences vol. 170 (2022): 106103. doi:10.1016/j. ejps.2021.106103Search in Google Scholar
Piperaki ET, Tzouvelekis LS, Miriagou V, Daikos GL. Carbapenem-resistant Acinetobacter baumannii: in pursuit of an effective treatment. Clin Microbiol Infect. 2019 Aug;25(8):951-957. doi: 10.1016/j.cmi.2019.03.014. Epub 2019 Mar 23. PMID: 30914347.)Search in Google Scholar
Sorieul, Charlotte, et al. “Glycoconjugate vaccines against antimicrobial-resistant pathogens.” Expert review of vaccines vol. 22,1 (2023): 1055-1078. doi:10.1080/14760584.20 23.2274955Search in Google Scholar
Semenec, Lucie et al. “Cross-protection and cross-feeding between Klebsiella pneumoniae and Acinetobacter baumannii promotes their co-existence.” Nature communications vol. 14,1 702. 9 Feb. 2023, doi:10.1038/s41467-023-36252-2Search in Google Scholar
Ahn, Danielle et al. “Acquired resistance to innate immune clearance promotes Klebsiella pneumoniae ST258 pulmonary infection.” JCI insight vol. 1,17 e89704. 20 Oct. 2016, doi:10.1172/jci. insight.89704Search in Google Scholar
Dumigan, Amy et al. “In vivo single-cell transcriptomics reveal Klebsiella pneumoniae skews lung macrophages to promote infection.” EMBO molecular medicine vol. 14,12 (2022): e16888. doi:10.15252/emmm.202216888Search in Google Scholar
Catalano, Alessia et al. “Antibiotic-Resistant ESKAPE Pathogens and COVID-19: The Pandemic beyond the Pandemic.” Viruses vol. 15,9 1843. 30 Aug. 2023, doi:10.3390/v15091843Search in Google Scholar