Open Access

Theoretical and Experimental Investigation of the Thermal Inactivation of Thermoanaerobacterium Thermosaccharolyticum and Geobacillus Stearothermophilus in Different Canned Food Matrices


Cite

Ababouch, L. (2014). Heat treatment of foods: Spoilage problems associated with canning. Encyclopedia of Food Microbiology: 2nd ed., 2, 175–180. https://doi.org/10.1016/B978-0-12-384730-0.00157-910.1016/B978-0-12-384730-0.00157-9 Search in Google Scholar

Ahn, J., Balasubramaniam, V. M., & Yousef, A. E. (2007). Inactivation kinetics of selected aerobic and anaerobic bacterial spores by pressure-assisted thermal processing. International Journal of Food Microbiology, 113, 321–329. https://doi.org/10.1016/j.ijfoodmicro.2006.08.01210.1016/j.ijfoodmicro.2006.08.01217196696 Search in Google Scholar

André, S., Zuber, F., & Remize, F. (2013). Thermophilic spore-forming bacteria isolated from spoiled canned food and their heat resistance. Results of a French tenyear survey. International Journal of Food Microbiology, 165, 134–143. https://doi.org/10.1016/j.ijfoodmicro.2013.04.01910.1016/j.ijfoodmicro.2013.04.01923728430 Search in Google Scholar

André, S., Charton, A., Pons, A., Vannier, C., & Couvert, O. (2021). Viability of bacterial spores surviving heat-treatment is lost by further incubation at temperature and pH not suitable for growth. Food Microbiology, 95, 103690. https://doi.org/10.1016/j.fm.2020.10369010.1016/j.fm.2020.10369033397631 Search in Google Scholar

André, S., Vallaeys, T., & Planchon, S. (2017). Spore-forming bacteria responsible for food spoilage. Research in Microbiology, 168, 379–387. https://doi.org/10.1016/j.resmic.2016.10.00310.1016/j.resmic.2016.10.00327989764 Search in Google Scholar

Bratt, L. (2013). Technical guide to fish canning. FAO GLOBEFISH Research Programme, 111, 1–69. Search in Google Scholar

Bigelow, W. D., Bohart, G. S., Richardson, A. C., & Ball, C. O. (1920). Heat penetration in processing canned foods. Bulletin No. 16L. National Canners Association. Search in Google Scholar

Byrer, D. E., Rainey, F. A., & Wiegel, J. (2000). Novel strains of Moorella thermoacetica form unusually heatresistant spores. Archives of Microbiology, 174, 334–339. https://doi.org/10.1007/s00203000021110.1007/s00203000021111131023 Search in Google Scholar

Cameron, M. S., Leonard, S. J., & Barrett, E. L. (1980). Effect of moderately acidic pH on heat resistance of Clostridium sporogenes spores in phosphate buffer and in buffered pea puree. Applied and Environmental Microbiology, 39, 943–949. https://doi.org/10.1128/AEM.39.5.943-949.198010.1128/aem.39.5.943-949.19802914567396485 Search in Google Scholar

da Silva, N., Taniwaki, M. H., Junqueira, V. C. A., Silveira, N., Okazaki, M. M., & Gomes, R. A. R. (2018). Microbiological Examination Methods of Food and Water: A Laboratory Manual: 2nd ed. CRC Press LLC.10.1201/9781315165011 Search in Google Scholar

Delves-Broughton, J. (2008). Use of the natural food preservatives, nisin and natamycin, to reduce detrimental thermal impact on product quality. In-Pack Processed Foods: Improving Quality. Woodhead Publishing Limited. https://doi.org/10.1533/9781845694692.4.31910.1533/9781845694692.4.319 Search in Google Scholar

Durand, L., Planchon, S., Guinebretiere, M. H., Carlin, F., & Remize, F. (2015). Genotypic and phenotypic characterization of foodborne Geobacillus stearothermophilus. Food Microbiology, 45, 103–110. doi:10.1016/j.fm.2014.01.01510.1016/j.fm.2014.01.01525481066 Search in Google Scholar

FDA (2020). Code of federal regulations Title 21, 114, 3. Retrieved from https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=114.3 Search in Google Scholar

Janštová, B., & Lukášová, J. (2001). Heat resistance of Bacillus spp. spores isolated from cow’s milk and farm environment. Acta Veterinaria Brno, 70, 179–184. https://doi.org/10.2754/avb20017002017910.2754/avb200170020179 Search in Google Scholar

Jay, M. J., Loessner, J. M., & Golden, D. A. (2005). Modern Food Microbiology: 7th ed. Springer. doi:10.1007/b10084010.1007/b100840 Search in Google Scholar

Kirse-Ozolina, A., Muizniece-Brasava, S., Raits, E., Kruma, Z. (2019). Effect of sterilization parameters on the quality of commercially-prepared instant soups. Engineering for rural development, 22.-24.05.2019. (695-704). Latvia, Jelgava: Latvia University of Life Sciences and Technologies. Search in Google Scholar

Kotzekidou, P. (2014). Bacillus: Geobacillus stearothermophilus (formerly Bacillus stearothermophilus). Encyclopedia of Food Microbiology: 2nd ed. Elsevier. https://doi.org/10.1016/B978-0-12-384730-0.00020-310.1016/B978-0-12-384730-0.00020-3 Search in Google Scholar

López, M., González, I., Mazas, M., González, J., Martin, R., & Bernardo, A. (1997). Influence of recovery conditions on apparent heat resistance of Bacillus stearothermophilus spores. International Journal of Food Science and Technology, 32, 305–311. https://doi.org/10.1046/j.1365-2621.1997.00115.x10.1046/j.1365-2621.1997.00115.x Search in Google Scholar

Mtimet, N., Guégan, S., Durand, L., Mathot, A. G., Venaille, L., Leguérinel, I., … Couvert, O. (2016). Effect of pH on Thermoanaerobacterium thermosaccharolyticum DSM 571 growth, spore heat resistance and recovery. Food Microbiology, 55, 64–72. https://doi.org/10.1016/j.fm.2015.11.01510.1016/j.fm.2015.11.015 Search in Google Scholar

Mtimet, N., Trunet, C., Mathot, A. G., Venaille, L., Leguérinel, I., Coroller, L., & Couvert, O. (2015). Modeling the behavior of Geobacillus stearothermophilus ATCC 12980 throughout its life cycle as vegetative cells or spores using growth boundaries. Food Microbiology, 48, 153–162. https://doi.org/10.1016/j.fm.2014.10.01310.1016/j.fm.2014.10.013 Search in Google Scholar

Palop, A., Raso, J., Pagán, R., Condón, S., & Sala, F. J. (1999). Influence of pH on heat resistance of spores of Bacillus coagulans in buffer and homogenized foods. International Journal of Food Microbiology, 46, 243–249. https://doi.org/10.1016/S0168-1605(98)00199-810.1016/S0168-1605(98)00199-8 Search in Google Scholar

Peng, J., Mah, J. H., Somavat, R., Mohamed, H., Sastry, S., & Tang, J. (2012). Thermal inactivation kinetics of Bacillus coagulans spores in tomato juice. Journal of Food Protection, 75, 1236–1242. https://doi.org/10.4315/0362-028X.JFP-11-49010.4315/0362-028X.JFP-11-49022980006 Search in Google Scholar

Rigaux, C., Denis, J. B., Albert, I., & Carlin, F. (2013). A meta-analysis accounting for sources of variability to estimate heat resistance reference parameters of bacteria using hierarchical Bayesian modeling: Estimation of D at 121.1 °C and pH 7, zT and zpH of Geobacillus stearothermophilus. International Journal of Food Microbiology, 161, 112–120. https://doi.org/10.1016/j.ijfoodmicro.2012.12.00110.1016/j.ijfoodmicro.2012.12.00123279820 Search in Google Scholar

Somavat, R., Mohamed, H. M. H., Chung, Y. K., Yousef, A. E., & Sastry, S. K. (2012). Accelerated inactivation of Geobacillus stearothermophilus spores by ohmic heating. Journal of Food Engineering, 108, 69–76. https://doi.org/10.1016/j.jfoodeng.2011.07.02810.1016/j.jfoodeng.2011.07.028 Search in Google Scholar

Teixeira, A. (2006). Simulating Thermal Food Processes Using Deterministic Models. In: Thermal Food Processing, New Technologies and Quality Issues. CRC Press LLC. Search in Google Scholar

Warne, D. (1988). Manual on Fish Canning. Rome: FAO Search in Google Scholar

eISSN:
2256-0939
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Biotechnology, Ecology, Plant Science