Open Access

Normal tissue objective (NTO) tool in Eclipse treatment planning system for dose distribution optimization


Cite

1. Miranda-Filho A, Piñeros M, Soerjomataram I, Deltour I, Bray F. Cancers of the brain and CNS: global patterns and trends in incidence. Neuro Oncol. 2017;19(2):270-280. https://doi.org/10.1093/neuonc/now166.546429227571887 Search in Google Scholar

2. National Brain Tumor Society. Current treatments for brain tumors. Natl. Brain Tumor Soc. 2017. Accessed from National brain tumor society. Current Treatments for Brain Tumors. https://braintumor.org/wp-content/assets/2017_NBTS_CurrentTreatmentOptions_083017.Pdf Search in Google Scholar

3. Anam C, Soejoko DS, Haryanto F, Yani S, Dougherty G. Electron contamination for 6 MV photon beams from an Elekta linac: Monte Carlo simulation. Journal of Physics and Its Applications. 2020;2(2):97-101. https://doi.org/10.14710/jpa.v2i2.7771 Search in Google Scholar

4. Rusthoven KE, Pugh TJ. Stereotactic body radiation therapy for inoperable lung cancer. JAMA. 2010;303(23):2354-2355. https://doi.org/10.1001/jama.2010.77720551403 Search in Google Scholar

5. Lorentini S, Amelio D, Giri MG, et al. IMRT or 3D-CRT in glioblastoma? A dosimetric criterion for patient selection. Technol Cancer Res Treat. 2013;12(5):411-420. https://doi.org/10.7785/tcrt.2012.50034 Search in Google Scholar

6. Dunlop A, Welsh L, McQuaid D, et al. Brain-sparing methods for IMRT of head and neck cancer. PloS One. 2015;10(3):e0120141. https://doi.org/10.1371/journal.pone.0120141436453625781636 Search in Google Scholar

7. Herman TDLF, Ahmad S, Vlachaki MT. Intensity modulated radiation therapy versus three dimensional conformal radiation therapy for treatment of high grade glioma: a radiobiological modeling study. J Xray Sci Technol. 2010;18(4):393-402. https://doi.org/10.3233/XST-2010-027021045276 Search in Google Scholar

8. Yani S, Budiansah I, Pratama SH, Rhani MF, Anam C, Haryanto F. Evaluation of the dosimetric characteristics of 10 MV flattened and unflattened photon beams in a heterogeneous phantom. Int J Radiat Res. 2021;19(4):835-841. https://doi.org/10.29242/ijrr.19.4.835 Search in Google Scholar

9. Corkum MT, Mitchell S, Venkatesan V, Read N, Warner A, Palma DA. Does 5 + 5 equal better radiation treatment plans in head and neck cancers? Advances in Radiation Oncology. 2019;4(4):683-688. https://doi.org/10.1016/j.adro.2019.06.001681753331673661 Search in Google Scholar

10. Xhaferllari I, Wong E, Bzdusek K, Lock M, Chen JZ. Automated IMRT planning with regional optimization using planning scripts. J Appl Clin Med Phys. 2013;14(1):176-191. https://doi.org/10.1120/jacmp.v14i1.4052571404823318393 Search in Google Scholar

11. Wang D, Denittis A, Hu Y. Strategies to optimize stereotactic radiosurgery plans for brain tumors with volumetric-modulated arc therapy. J Appl Clin Med Phys. 2020;21(3):45-51. https://doi.org/10.1002/acm2.12818707538732043810 Search in Google Scholar

12. Jiménez-Puertas S, Sánchez-Artuñedo D, Hermida-López M. Assessment of the Monitor Unit Objective tool for VMAT in the Eclipse treatment planning system. Rep Pract Oncol Radiother. 2018;23(2):121-125. https://doi.org/10.1016/j.rpor.2018.02.001 Search in Google Scholar

13. Fogliata A, Reggiori G, Stravato A, et al. RapidPlan head and neck model: The objectives and possible clinical benefit. Radiat Oncol. 2017;12(1):73. https://doi.org/10.1186/s13014-017-0808-x Search in Google Scholar

14. Fogliata A, Thompson S, Stravato A, Tomtis S, Scorsetti M, Cozzi L. On the gEUD biological optimization objective for organs at risk in Photon Optimizer of Eclipse treatment planning system. J Appl Clin Med Phys. 2018;19(1):106-114. https://doi.org/10.1002/acm2.12224 Search in Google Scholar

15. Varian Medical System. Eclipse photon and electron algorithms reference guide. Varian Medical Systems, Inc. 2015. 3100 Hansen Way Palo Alto, CA 94304-1038 United States of America Search in Google Scholar

16. Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3):S10-S19. https://doi.org/10.1016/j.ijrobp.2009.07.1754 Search in Google Scholar

17. Antero AJ, Marika PK. Spatially-variant normal tissue objective for radiotherapy. Varian Medical Systems Int Ag (Ch). 2013; EP2038010. https://www.freepatentsonline.com/EP2038010B1.html Search in Google Scholar

18. Cao T, Dai Z, Ding Z, Li W, Quan H. Analysis of different evaluation indexes for prostate stereotactic body radiation therapy plans: conformity index, homogeneity index and gradient index. Precision Radiation Oncology. 2019;3(3):72-79. https://doi.org/10.1002/pro6.1072 Search in Google Scholar

19. Lomax NJ, Scheib SG. Quantifying the degree of conformity in radiosurgery treatment planning. Int J Radiat Oncol Biol Phys. 2003;55(5):1409-1419. https://doi.org/10.1016/S0360-3016(02)04599-6 Search in Google Scholar

20. Shaw E, Kline R, Gillin M, et al. Radiation therapy oncology group: Radiosurgery quality assurance guidelines. Int J Radiat Oncol Biol Phys. 1993;27(5):1231-1239. https://doi.org/10.1016/0360-3016(93)90548-A Search in Google Scholar

21. Paddick I, Lippitz B. A simple dose gradient measurement tool to complement the conformity index. J Neurosurg. 2006;105:194-201. https://doi.org/10.3171/sup.2006.105.7.19418503356 Search in Google Scholar

22. Ohtakara K, Hayashi S, Hoshi H. Dose gradient analyses in linac-based intracranial stereotactic radiosurgery using paddick’s gradient index: Consideration of the optimal method for plan evaluation. J Radiat Res. 2011;52(5):592-599. https://doi.org/10.1269/jrr.1100521768752 Search in Google Scholar

23. Sheng, K., Molloyb, J. A., Larnera, J. M., Reada P. W., 2007, A dosimetric comparison of non-coplanar IMRT versus Helical Tomotherapy for nasal cavity and paranasal sinus cancer, Radiotherapy and Oncology, vol. 82(2), pp. 174-178, https://doi.org/10.1016/j.radonc.2007.01.00817275112 Search in Google Scholar

24. Rosenwald JC, Gaboriaud G, Pontvert D. La radiothhrapie conformationnelle principes et classification. Cancer/Radiothérapie. 1999;3(5):367-377. https://doi.org/10.1016/S1278-3218(00)87975-5 Search in Google Scholar

25. Shaw E, Scott C, Souhami L, et al. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys. 2000;47(2):291-298. https://doi.org/10.1016/s0360-3016(99)00507-6 Search in Google Scholar

26. Caldeira A, Trinca WC, Flores TP, et al. The influence of normal tissue objective in the treatment of prostate cancer. J Med Imag Radiat Sci. 2020;51(2):312-316. https://doi.org/10.1016/j.jmir.2020.02.00632327305 Search in Google Scholar

27. Bell J P, Patel P, Higgins K, McDonald MW, Roper J. Fine-tuning the normal tissue objective in Eclipse for lung stereotactic body radiation therapy. Med Dosim.2018;43(4):344-350. https://doi.org/10.1016/j.meddos.2017.11.00429277249 Search in Google Scholar

28. Xu L, Xu Y, Chen X, Xie X, Liang B, Dai J. A new homogeneity index definition for evaluation of radiotherapy plans. J Appl Clin Med Phys. 2019;20(11):50-56. https://doi.org/10.1002/acm2.12739683936531605454 Search in Google Scholar

29. Blonigen BJ, Steinmetz RD, Levin L, et al. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010;77(4):996-1001. https://doi.org/10.1016/j.ijrobp.2009.06.00619783374 Search in Google Scholar

30. Ernst-Stecken A, Ganslandt O, Lambrecht U, Sauer R, Grabenbauer G. Phase II trial of hypofractionated stereotactic radiotherapy for brain metastases: results and toxicity. Radiother Oncol. 2006;81(1):18-24. https://doi.org/10.1016/j.radonc.2006.08.02416978720 Search in Google Scholar

31. Gong Y, Wang J, Bai S, Jiang X, Xu F. Conventionally-fractionated image-guided intensity modulated radiotherapy (IG-IMRT): A safe and effective treatment for cancer spinal metastasis. Radiat Oncol. 2008;3(11):1-10. https://doi.org/10.1186/1748-717X-3-11237379218426607 Search in Google Scholar

32. Eric JH. Intensity-modulated radiation therapy, protons, and the risk of second cancers. Int J Radiat Oncol Biol Phys. 2006;65(1):1-7. https://doi.org/10.1016/j.ijrobp.2006.01.02716618572 Search in Google Scholar

33. Kry SF, Salehpour M, Followill DS, et al. The calculated risk of fatal secondary malignancies from intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys. 2005;62(4):1195-1203. https://doi.org/10.1016/j.ijrobp.2005.03.05315990025 Search in Google Scholar

34. Van Timmeren JE, Ehrbar S, Chamberlain M, et al. Single-isocenter versus multiple-isocenters for multiple lung metastases: evaluation of lung dose. Radiother Oncol. 2022;166:189-194. https://doi.org/10.1016/j.radonc.2021.11.03034864135 Search in Google Scholar

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics