Cite

1. Alamzadeh Z, Beik J, Mirrahimi M, et al. Gold nanoparticles promote a multimodal synergistic cancer therapy strategy by co-delivery of thermo-chemo-radio therapy. Eur J Pharm Sci. 2020;145(105235):1-8. https://doi.org/10.1016/j.ejps.2020.10523510.1016/j.ejps.2020.10523531991226 Search in Google Scholar

2. Ahmad R, Schettino G, Royle G, et al. Radiobiological Implications of Nanoparticles Following Radiation Treatment. Part Part Syst Charact. 2020;1900411. https://doi.org/10.1002/ppsc.20190041110.1002/ppsc.201900411842746834526737 Search in Google Scholar

3. Igaz N, Szőke K, Kovács D, et al. Synergistic radiosensitization by gold nanoparticles and the histone deacetylase inhibitor SAHA in 2D and 3D cancer cell cultures. Nanomaterials. 2020;10(1). https://doi.org/10.3390/nano1001015810.3390/nano10010158702303031963267 Search in Google Scholar

4. Moradi F, Rezaee Ebrahim Saraee K, Abdul Sani SF, Bradley DA. Metallic nanoparticle radiosensitization: The role of Monte Carlo simulations towards progress. Radiat Phys Chem. 2021;180(109294). https://doi.org/10.1016/j.radphyschem.2020.10929410.1016/j.radphyschem.2020.109294 Search in Google Scholar

5. Cunningham C. Radiosensitization Effects of Gold Nanoparticles in Proton Therapy. Msc. Published online 2017. Search in Google Scholar

6. Yang C, Bromma K, Sung W, Schuemann J, Chithrani D. Determining the radiation enhancement effects of gold nanoparticles in cells in a combined treatment with cisplatin and radiation at therapeutic megavoltage energies. Cancers (Basel). 2018;10(150):1-16. https://doi.org/10.3390/cancers1005015010.3390/cancers10050150597712329786642 Search in Google Scholar

7. Rahman WNWA, Rashid RA, Muhammad M, Dollah N, Razak KA, Geso M. Dose Enhancement by Different Size of Gold Nanoparticles Under Irradiation of Megavoltage Photon Beam. J Sains Nukl Malaysia. 2018;30(2):23-29. Search in Google Scholar

8. Abdul Rashid R, Zainal Abidin S, Khairil Anuar MA, et al. Radiosensitization effects and ROS generation by high Z metallic nanoparticles on human colon carcinoma cell (HCT116) irradiated under 150 MeV proton beam. OpenNano. 2019;4:100027. https://doi.org/10.1016/j.onano.2018.10002710.1016/j.onano.2018.100027 Search in Google Scholar

9. Rahman WNWA. Gold nanoparticles: novel radiobiological dose enhancement studies for radiation therapy, synchrotron based microbeam and stereotactic radiotherapy. PhD. 2010.10.1063/1.3478186 Search in Google Scholar

10. Verry C, Sancey L, Dufort S, et al. Treatment of multiple brain metastases using gadolinium nanoparticles and radiotherapy: NANORAD, a phase I study protocol. BMJ Open. 2019;9(2):1-6. https://doi.org/10.1136/bmjopen-2018-02359110.1136/bmjopen-2018-023591637753830755445 Search in Google Scholar

11. Bonvalot S, Le Pechoux C, De Baere T, et al. First-in-human study testing a new radioenhancer using nanoparticles (NBTXR3) activated by radiation therapy in patients with locally advanced soft tissue sarcomas. Clin Cancer Res. 2017;23(4):908-917. https://doi.org/10.1158/1078-0432.CCR-16-129710.1158/1078-0432.CCR-16-129727998887 Search in Google Scholar

12. Muhammad MA, Rashid RA, Lazim RM, Dollah N, Razak KA, Rahman WN. Evaluation of radiosensitization effects by platinum nanodendrites for 6 MV photon beam radiotherapy. Radiat Phys Chem. 2018;150:40-45. https://doi.org/10.1016/j.radphyschem.2018.04.01810.1016/j.radphyschem.2018.04.018 Search in Google Scholar

13. Lazim RM, Rashid RA, Pham BTT, Hawkett BS, Geso M, Rahman WN. Radiation Dose Enhancement Effects of Superparamagnetic Iron Oxide nanoparticles to the T24 Bladder Cancer Cell Lines Irradiated with Megavoltage Photon Beam Radiotheray. J Sains Nukl Malaysia. 2018;30(2):30-38. Search in Google Scholar

14. Algethami M, Geso M, PIva T, et al. Radiation Dose Enhancement Using Bi2S3 Nanoparticles in Cultured Mouse PC3 Prostate and B16 Melanoma Cells. NanoWorld J. 2015;1(3). https://doi.org/10.17756/nwj.2015-01310.17756/nwj.2015-013 Search in Google Scholar

15. Rajaee A, Wang S, Zhao L. Bismuth-based nanoparticles as radiosensitizer in low and high dose rate brachytherapy. Polish J Med Phys Eng. 2019;25(2):79-85. https://doi.org/10.2478/pjmpe-2019-001110.2478/pjmpe-2019-0011 Search in Google Scholar

16. Zhou R, Wang H, Yang Y, et al. Tumor microenvironment-manipulated radiocatalytic sensitizer based on bismuth heteropolytungstate for radiotherapy enhancement. Biomaterials. 2019;189:11-22. https://doi.org/10.1016/j.biomaterials.2018.10.01610.1016/j.biomaterials.2018.10.01630384125 Search in Google Scholar

17. Deng J, Xu S, Hu W, Xun X, Zheng L, Su M. Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer. Biomaterials. 2018;154:24-33. https://doi.org/10.1016/j.biomaterials.2017.10.04810.1016/j.biomaterials.2017.10.04829120816 Search in Google Scholar

18. Sisin NNT, Abidin SZ, Yunus MA, Zin HM, Razak KA, Rahman WN. Evaluation of Bismuth Oxide Nanoparticles as Radiosensitizer for Megavoltage Radiotherapy. Int J Adv Sci Eng Inf Technol. 2019;9(4):1434-1443. https://doi.org/10.18517/ijaseit.9.4.721810.18517/ijaseit.9.4.7218 Search in Google Scholar

19. Sisin NNT, Abdul Razak K, Zainal Abidin S, et al. Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for High Dose Rate Brachytherapy. Int J Nanomedicine. 2019;14:9941-9954.10.2147/IJN.S228919692722931908451 Search in Google Scholar

20. Zhou R, Liu X, Wu Y, et al. Suppressing the radiation-induced corrosion of bismuth nanoparticles for enhanced synergistic cancer radiophototherapy. ACS Nano. 2020;14(10):13016-13029. https://doi.org/10.1021/acsnano.0c0437510.1021/acsnano.0c0437532898419 Search in Google Scholar

21. Rahman WN, Bishara N, Ackerly T, et al. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine Nanotechnology, Biol Med. 2009;5:136-142. https://doi.org/10.1016/j.nano.2009.01.01410.1016/j.nano.2009.01.01419480049 Search in Google Scholar

22. Rashid RA, Razak KA, Geso M, Abdullah R, Dollah N, Rahman WN. Radiobiological Characterization of the Radiosensitization Effects by Gold Nanoparticles for Megavoltage Clinical Radiotherapy Beams. Bionanoscience. 2018;8(3):713-722. https://doi.org/10.1007/s12668-018-0524-510.1007/s12668-018-0524-5 Search in Google Scholar

23. Smith CL, Ackerly T, Best SP, et al. Determination of dose enhancement caused by gold-nanoparticles irradiated with proton, X-rays (kV and MV) and electron beams, using alanine/EPR dosimeters. Radiat Meas. 2015;82:122-128. https://doi.org/10.1016/j.radmeas.2015.09.00810.1016/j.radmeas.2015.09.008 Search in Google Scholar

24. Rahman WN, Kadian SNM, Ab Rashid R, et al. Radiosensitization characteristic of superparamagnetic iron oxide nanoparticles in electron beam radiotherapy and brachytherapy. J Phys Conf Ser. 2019;1248:1-6. https://doi.org/10.1088/1742-6596/1248/1/01206810.1088/1742-6596/1248/1/012068 Search in Google Scholar

25. Abidin SZ, Zulkifli ZA, Razak KA, Zin H, Yunus MA, Rahman WN. PEG coated bismuth oxide nanorods induced radiosensitization on MCF-7 breast cancer cells under irradiation of megavoltage radiotherapy beams. Mater Today Proc. 2019;16:1640-1645. https://doi.org/10.1016/j.matpr.2019.06.02910.1016/j.matpr.2019.06.029 Search in Google Scholar

26. Abidin SZ, Razak KA, Zin H, et al. Comparison of clonogenic and PrestoBlue assay for radiobiological assessment of radiosensitization effects by bismuth oxide nanorods. Mater Today Proc. 2019;16:1646-1653. https://doi.org/10.1016/j.matpr.2019.06.03010.1016/j.matpr.2019.06.030 Search in Google Scholar

27. Seabra A, Durán N. Nanotoxicology of Metal Oxide Nanoparticles. Metals (Basel). 2015;5(2):934-975. https://doi.org/10.3390/met502093410.3390/met5020934 Search in Google Scholar

28. Chithrani BD, Ghazani AA, Chan WCW. Determining the Size and Shape Dependence of Gold Nanoparticles Uptake Into Mammalian Cells. Nano Lett. 2006;6(4):662-668. https://doi.org/10.1021/nl052396o10.1021/nl052396o16608261 Search in Google Scholar

29. Venkatesh DN, Rao P. Nanoparticles For Cancer Treatment - A Comprehensive Review. World J Pharm Pharm Sci. 2016;5(9):481-499. https://doi.org/10.20959/wjpps20169-7513 Search in Google Scholar

30. Koger B, Kirkby C. Dosimetric effects of polyethylene glycol surface coatings on gold nanoparticle radiosensitization. Phys Med Biol. 2017;92(8455). https://doi.org/10.1088/1361-6560/aa8e1210.1088/1361-6560/aa8e1228933351 Search in Google Scholar

31. Zulkifli ZA, Razak KA, Rahman WNWA, Abidin SZ. Synthesis and Characterisation of Bismuth Oxide Nanoparticles using Hydrothermal Method: The Effect of Reactant Concentrations and application in radiotherapy. In: Journal of Physics: Conference Series. Vol 1082. IOP Publishing; 2018:1-7. https://doi.org/10.1088/1742-6596/1082/1/01210310.1088/1742-6596/1082/1/012103 Search in Google Scholar

32. Zulkifli ZA, Razak KA, Rahman WNWA. The effect of reaction temperature on the particle size of bismuth oxide nanoparticles synthesized via hydrothermal method. In: 3rd International Concerence on the Science and Engineering of Materials (ICoSEM 2017) AIP Conference Proceedings 1958. Vol 020007. American Institute of Physics; 2018:1-5. https://doi.org/10.1063/1.503453810.1063/1.5034538 Search in Google Scholar

33. Sisin NNT, Mat NFC, Abdullah R, Rahman WN. Baicalein-rich Fraction as a Potential Radiosensitizer or Radioprotective for HDR Brachytherapy: A Preliminary Study. J Nucl Relat Technol. 2020;18(1):9-16. Search in Google Scholar

34. Mukherjee SG, O’Claonadh N, Casey A, Chambers G. Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicol Vitr. 2012;26(2):238-251. https://doi.org/10.1016/j.tiv.2011.12.00410.1016/j.tiv.2011.12.00422198051 Search in Google Scholar

35. Swanepoel B, Nitulescu GM, Olaru OT, Venables L, van de Venter M. Anti-Cancer Activity of a 5-Aminopyrazole Derivative Lead Compound (BC-7) and Potential Synergistic Cytotoxicity with Cisplatin against Human Cervical Cancer Cells. Int J Mol Sci. 2019;20(22). https://doi.org/10.3390/ijms2022555910.3390/ijms20225559688836531703393 Search in Google Scholar

36. Moghaddam AB, Moniri M, Azizi S, et al. Eco-friendly formulated zinc oxide nanoparticles: Induction of cell cycle arrest and apoptosis in the MCF-7 cancer cell line. Genes (Basel). 2017;8(10):281. https://doi.org/10.3390/genes810028110.3390/genes8100281566413129053567 Search in Google Scholar

37. Cui L, Her S, Dunne M, et al. Significant Radiation Enhancement Effects by Gold Nanoparticles in Combination with Cisplatin in Triple Negative Breast Cancer Cells and Tumor Xenografts. Radiat Res. 2017;187(2):147-160. https://doi.org/10.1667/RR14578.110.1667/RR14578.128085639 Search in Google Scholar

38. Sisin NNT, Razak KA, Abidin SZ, et al. Synergetic influence of bismuth oxide nanoparticles, cisplatin and baicalein-rich fraction on reactive oxygen species generation and radiosensitization effects for clinical radiotherapy beams. Int J Nanomedicine. 2020; (15):7805-7823. https://doi.org/10.2147%2FIJN.S26921410.2147/IJN.S269214756756533116502 Search in Google Scholar

39. Hamida RS, Albasher G, Bin-Meferij MM. Oxidative stress and apoptotic responses elicited by nostoc-synthesized silver nanoparticles against different cancer cell lines. Cancers (Basel). 2020;12(8):2099. https://doi.org/10.3390/cancers1208209910.3390/cancers12082099746469332731591 Search in Google Scholar

40. Alshatwi AA, Athinarayanan J, Periasamy VS, Prato M. Synthesis of copper-platinum nanoparticles induce apoptosis in THP-1 cells. IEEE-NANO 2015 - 15th Int Conf Nanotechnol. Published online 2015:1111-1113. https://doi.org/10.1109/NANO.2015.738881710.1109/NANO.2015.7388817 Search in Google Scholar

41. Li Z, Liu J, Hu Y, et al. Biocompatible PEGylated bismuth nanocrystals: “All-in-one” theranostic agent with triple-modal imaging and efficient in vivo photothermal ablation of tumors. Biomaterials. 2017;141:284-295. https://doi.org/10.1016/j.biomaterials.2017.06.03310.1016/j.biomaterials.2017.06.03328709019 Search in Google Scholar

42. Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Tan WS. Stealth coating of Nanoparticles in drug-delivery systems. Nanomaterials. 2020;10(4):1-18. https://doi.org/10.3390/nano1004078710.3390/nano10040787722191932325941 Search in Google Scholar

43. M. Christopher AMLS. Bio-inspired shielding strategies for NPs drug delivery. Physiol Behav. 2016;176(1):100–106. https://doi.org/10.1021/acs.molpharmaceut.8b00292.Bio Search in Google Scholar

44. Abakumov MA, Semkina AS, Skorikov AS, et al. Toxicity of iron oxide nanoparticles: Size and coating effects. J Biochem Mol Toxicol. 2018;32(12):1-6. https://doi.org/10.1002/jbt.2222510.1002/jbt.2222530290022 Search in Google Scholar

45. Xue W, Liu Y, Zhang N, et al. Effects of core size and PEG coating layer of iron oxide nanoparticles on the distribution and metabolism in mice. Int J Nanomedicine. 2018;13:5719-5731. https://doi.org/10.2147/IJN.S16545110.2147/IJN.S165451616577230310275 Search in Google Scholar

46. Zheng XJ, Chow JCL. Radiation dose enhancement in skin therapy with nanoparticle addition: A Monte Carlo study on kilovoltage photon and megavoltage electron beams. World J Radiol. 2017;9(2):63. https://doi.org/10.4329/wjr.v9.i2.6310.4329/wjr.v9.i2.63533450328298966 Search in Google Scholar

47. Hwang C, Kim JM, Kim J. Influence of concentration, nanoparticle size, beam energy, and material on dose enhancement in radiation therapy. J Radiat Res. 2017;58(4):405-411. https://doi.org/10.1093/jrr/rrx00910.1093/jrr/rrx009556970428419319 Search in Google Scholar

48. Mehrnia SS, Hashemi B, Mowla SJ, Arbabi A. Enhancing the effect of 4 MeV electron beam using gold nanoparticles in breast cancer cells. Phys Medica. 2017;35:18-24. https://doi.org/10.1016/j.ejmp.2017.02.01410.1016/j.ejmp.2017.02.01428285936 Search in Google Scholar

49. Guo T. Physical, chemical and biological enhancement in X-ray nanochemistry. Phys Chem Chem Phys. 2019;21(29):15917-15931. https://doi.org/10.1039/c9cp03024g10.1039/C9CP03024G31309206 Search in Google Scholar

50. Ghorbani M, Tabatabaei ZS, Vejdani NA, Vosoughi H, Knaup C. Effect of Tissue Composition on Dose Distribution in Electron Beam Radiotherapy. J Biomed Phys Eng. 2000;5(1). Search in Google Scholar

51. Sisin NNT, Rashid RA, Abdullah R, et al. GafchromicTM EBT3 Film Measurements of Dose Enhancement Effects by Metallic Nanoparticles for 192 Ir Brachytherapy, Proton, Photon and Electron Radiotherapy. Radiation. 2022;2:130-148.10.3390/radiation2010010 Search in Google Scholar

52. Dayem AA, Hossain MK, Lee S Bin, et al. The role of reactive oxygen species (ROS) in the biological activities of metallic nanoparticles. Int J Mol Sci. 2017;18(120):1-21. https://doi.org/10.3390/ijms1801012010.3390/ijms18010120529775428075405 Search in Google Scholar

53. Stewart CAC. An investigation into the tailoring of bismuth oxide nanoceramic with a biomedical application as a high Z radiation enhancer for cancer therapy. MSc. Published online 2014. Search in Google Scholar

54. Alan Mitteer R, Wang Y, Shah J, et al. Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species. Sci Rep. 2015;5(13961):1-12. https://doi.org/10.1038/srep1396110.1038/srep13961456480126354413 Search in Google Scholar

55. Xue J, Yu C, Sheng W, et al. The Nrf2/GCH1/BH4 Axis Ameliorates Radiation-Induced Skin Injury by Modulating the ROS Cascade. J Invest Dermatol. 2017;137(10):2059-2068. https://doi.org/10.1016/j.jid.2017.05.01910.1016/j.jid.2017.05.01928596000 Search in Google Scholar

56. Liu G, Li Y, Yang L, et al. Cytotoxicity study of polyethylene glycol derivatives. RSC Adv. 2017;7(30):18252-18259. https://doi.org/10.1039/c7ra00861a10.1039/C7RA00861A Search in Google Scholar

57. Zhang T, Chen X, Xiao C, Zhuang X, Chen X. Synthesis of a phenylboronic ester-linked PEG-lipid conjugate for ROS-responsive drug delivery. Polym Chem. 2017;8(40):6209-6216. https://doi.org/10.1039/c7py00915a10.1039/C7PY00915A Search in Google Scholar

58. Cui L. Optimization of Gold Nanoparticle Radiosensitizers for Cancer Therapy Optimization of Gold Nanoparticle Radiosensitizers. PhD. Published online 2016. Search in Google Scholar

59. Zhu C, Hu W, Wu H, Hu X. No evident dose-response relationship between cellular ROS level and its cytotoxicity - A paradoxical issue in ROS-based cancer therapy. Sci Rep. 2014;4(5029):1-10. https://doi.org/10.1038/srep0502910.1038/srep05029403025724848642 Search in Google Scholar

60. Choi C, Son A, Lee HS, Lee YJ, Park HC. Radiosensitization by Marine Sponge Agelas sp. Extracts in Hepatocellular Carcinoma Cells with Autophagy Induction. Sci Rep. 2018;8(6317):1-10. https://doi.org/10.1038/s41598-018-24745-w10.1038/s41598-018-24745-w591039729679028 Search in Google Scholar

61. Lipiec E, Bambery KR, Heraud P, et al. Synchrotron FTIR shows evidence of DNA damage and lipid accumulation in prostate adenocarcinoma PC-3 cells following proton irradiation. J Mol Struct. 2014;1073:134-141. https://doi.org/10.1016/j.molstruc.2014.04.05610.1016/j.molstruc.2014.04.056 Search in Google Scholar

62. Chen Y, Li N, Wang J, et al. Enhancement of mitochondrial ROS accumulation and radiotherapeutic efficacy using a Gd-doped titania nanosensitizer. Theranostics. 2019;9(1):167-178. https://doi.org/10.7150/thno.2803310.7150/thno.28033633280230662560 Search in Google Scholar

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics