Cite

1. Wyman DR, Ostapiak OZ, Gamble LM. Analysis of mechanical sources of patient alignment errors in radiation therapy. Med Phys 2002;29(11). https://doi.org/10.1118/1.151704710.1118/1.151704712462738Search in Google Scholar

2. Ezzell G, Chera B, Dicker A et al. Common error pathways seen in the RO-ILS data that demonstrate opportunities for improving treatment safety. Pract Radiat Oncol 2018;8(2):123-13210.1016/j.prro.2017.10.00729329998Search in Google Scholar

3. Goff PH, Harrison LB, Furhang E et al. 2D kV orthogonal imaging with fiducial markers is more precise for daily image guided alignments than soft-tissue cone beam computed tomography for prostate radiation therapy. Adv Radiat Oncol 2017;2(3):420-42810.1016/j.adro.2017.05.001560531529114611Search in Google Scholar

4. Goyal S, Kataria T, Image Guidance in Radiation Therapy: Techniques and Applications. Radiol Res Prac 2014;Article ID 705604, https://doi.org/10.1155/2014/70560410.1155/2014/705604428140325587445Search in Google Scholar

5. Li G, Yang TJ, Furtado H et al. Clinical Assessment of 2D/3D Registration Accuracy in 4 Major Anatomic Sites Using On-Board 2D Kilovoltage Images for 6D Patient Setup. Technol Cancer Res Treat 2015;14(3):305-32410.1177/1533034614547454454486825223323Search in Google Scholar

6. Lecchi M, Fossati P, Elisei F et al. Current concepts on imaging in radiotherapy. Eur J Nucl Med Mol Imaging 2008;35(4):821-83710.1007/s00259-007-0631-y17972074Search in Google Scholar

7. Lindfors N, Lund H, Johansson H et al. Influence of patient position and other inherent factors on image quality in two different cone beam computed tomography (CBCT) devices. Eur J Radiol Open 2017:132-13710.1016/j.ejro.2017.10.001567589329159206Search in Google Scholar

8. Keall PJ, Hsu A, Xing L. Image-Guided Adaptive Radiotherapy, Leibel and Phillips Textbook of Radiation Oncology, wyd. Third Edition 2010.10.1016/B978-1-4160-5897-7.00012-3Search in Google Scholar

9. Li X. A., Adaptive Radiation Therapy in: Hendee W., Imaging in medical diagnosis and therapy, CRC Press Taylor and Francis Group 2011.Search in Google Scholar

10. Sonke JJ, Aznar M, Rasch C. Adaptive Radiotherapy for Anatomical Changes. Semin Radiat Oncol 2019;29(3):245-25710.1016/j.semradonc.2019.02.00731027642Search in Google Scholar

11. Feldkamp L, Davis L, Kress J. Practical cone-beam algorithm. J Opt Soc Am A 1984;1(6):612-61910.1364/JOSAA.1.000612Search in Google Scholar

12. Srinivasan K, Mohammadi M, Shepherd J. Applications of linac-mounted kilovoltage Cone-beam Computed Tomography on modern radiation therapy: A Review. Pol J Radiol 2014:79:181-9310.12659/PJR.890745408511725006356Search in Google Scholar

13. Mao W, Liu C, Gardner SJ et al. Evaluation and Clinical Application of a Commercially Available Iterative Reconstruction Algorithm for CBCT-Based IGRT. Technol Cancer Res Treat 2019:18: 153303381882305410.1177/1533033818823054637399430803367Search in Google Scholar

14. Stock M, Pasler M, Birkfellner W et al. Image quality and stability of image-guided radiotherapy (IGRT) devices: A comparative study. Radiother Oncol 2009;93(1)10.1016/j.radonc.2009.07.012286703219695725Search in Google Scholar

15. Moteabbed M, Sharp G, Wang Y et al. Validation of a deformable image registration technique for cone beam CT-based dose verification. Med Phys 2015;42(1):195-205Search in Google Scholar

16. Zoellner C, Rit S, Kurz C et al. Decomposing a prior-CT-based cone-beam CT projection correction algorithm into scatter and beam hardening components. Phys Imag Radiat Oncol 2017;3:49-5210.1016/j.phro.2017.09.002Search in Google Scholar

17. Schulze R, Heil U, Gross D et al. Artefacts in CBCT: a review. Dentomaxillofac Radiol 2011;40(5):265-27310.1259/dmfr/30642039352026221697151Search in Google Scholar

18. Kalender WA, Kyriakou Y. Flat-detector Computed Tomography (FD-CT). Eur Radiol 2007;17(11):2767-277910.1007/s00330-007-0651-917587058Search in Google Scholar

19. Marchant T, Joshi K, Moore C. Accuracy of radiotherapy dose calculations based on cone-beam CT: comparison of deformable registration and image correction based methods. Phys Med Biol 2018;63(6)10.1088/1361-6560/aab0f029461255Search in Google Scholar

20. Yuan Z, Rong Y, Benedict SH et al. “Dose of the day” based on cone beam computed tomography and deformable image registration for lung cancer radiotherapy. J Appl Clin Med Phys 2020;21(1):88-9410.1002/acm2.12793696475031816170Search in Google Scholar

21. Veiga C, McClelland J, Moinuddin S et al. Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for “dose of the day” calculations. Med Phys 2014;41(3)10.1118/1.486424024593707Search in Google Scholar

22. Oh S, Kim S. Deformable image registration in radiation therapy. Radiat Oncol J 2017;35(2):101-11110.3857/roj.2017.00325551845328712282Search in Google Scholar

23. Rigaud B, Simon A, Castelli J et al. Deformable image registration for radiation therapy: principle, methods, applications and evaluation. Acta Oncol 2019;58(9):1225-123710.1080/0284186X.2019.1620331Search in Google Scholar

24. Weistrand O, Svensson S. The ANACONDA algorithm for deformable image registration in radiotherapy. Med Phys 2015;42(1):40-5310.1118/1.4894702Search in Google Scholar

25. Brock KK, Mutic S, McNutt TR et al. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132. Med Phys 2017;44(7)10.1002/mp.12256Search in Google Scholar

26. Brock K. K., Hawkins M. A., Eccles C. L. et al., Improving image-guided target localization through deformable registration. Acta Oncol 2008;47(7):1279-128510.1080/02841860802256491Search in Google Scholar

27. Thirion J. Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis 1998;2(3):243-26010.1016/S1361-8415(98)80022-4Search in Google Scholar

28. Wang H, Dong L, O’Daniel J et al. Validation of an accelerated ‘demons’ algorithm for deformable image registration in radiation therapy. Phys Med Biol;50(12):2887-290510.1088/0031-9155/50/12/01115930609Search in Google Scholar

29. Lawson JD, Schreibmann E, Jani AB et al. Quantitative evaluation of a cone-beam computed tomography–planning computed tomography deformable image registration method for adaptive radiation therapy. Journal of Applied Clinical Medical Physics 2007;8(4):96-11310.1120/jacmp.v8i4.2432572262118449149Search in Google Scholar

30. Velocity 4.0 Instructions for use. Varian Medical Systems 2018Search in Google Scholar

31. Niu T, Sun M, Star-Lack J et al. Shading correction for on-board cone-beam CT in radiation therapy using planning MDCT images. Med Phys 2010;37(10):5395-540610.1118/1.348326021089775Search in Google Scholar

32. Kurz C, Dedes G, Resch A et al. Comparing cone-beam CT intensity correction methods for dose recalculation in adaptive intensity-modulated photon and proton therapy for head and neck cancer. Acta Oncol 2015;54(9):1651-165710.3109/0284186X.2015.106120626198654Search in Google Scholar

33. Laundry G, Dedes G, Zoellner C et al. Phantom Based Evaluation of CT to CBCT Image Registration for Proton Therapy Dose Recalculation. Phys Med Biol 2014;60(2):595-61310.1088/0031-9155/60/2/59525548912Search in Google Scholar

34. Kurz C, Kamp F, Park Y-K et al. Investigating deformable image registration and scatter correction for CBCT-based dose calculation in adaptive IMPT. Med Phys 2016;43(10):5635-564610.1118/1.496293327782706Search in Google Scholar

35. Thing RS, Bernchou U, Mainegra-Hing E et al. Hounsfield unit recovery in clinical cone beam CT images of the thorax acquired for image guided radiation therapy. Phys Med Biol 2016;61(15):5781-580210.1088/0031-9155/61/15/578127405692Search in Google Scholar

36. Thummerer A, Zaffino P, Meijers A et al. Comparison of CBCT based synthetic CT methods suitable for proton dose calculations in adaptive proton therapy. Phys Med Biol 2020;65(9)10.1088/1361-6560/ab7d5432143207Search in Google Scholar

eISSN:
1898-0309
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Biomedical Engineering, Physics, Technical and Applied Physics, Medical Physics