Open Access

Process of separating acetonitrile and water using LTTMs as entrainer


1. Ian, F., Woods, D., Lewis, M. & Gan, Q. (2012).The importance of acetonitrile in the pharmaceutical industry and opportunities for its recovery from waste. Org. Process Res. Dev., 16, 621–624. DOI: 10.1021/op2003503.10.1021/op2003503 Search in Google Scholar

2. Li, J., He, C., Peng, C. & Liu, H. (2019). Extractive Distillation with Ionic Liquid Entrainers for the Separation of Acetonitrile and Water. Eng. Chem. Res., 58, DOI: 5602-5612.10.1021/acs.iecr.8b05907. Search in Google Scholar

3. Li, Y. (1998). Development and utilization of acrylonitrile by-product acetonitrile. Petroleum Technol., 27, 367–373. DOI: CNKI:SUN:SYHG.0.1998-05-014. Search in Google Scholar

4. Kim, K., Lee, D., Jung, H., & Sun, Y. (2013). Hium-sulfur batteries: an advanced lithium-sulfur battery. Adv. Funct. Mater., 23, 1076–1080. DOI: 10.1002/adfm.201370039.10.1002/adfm.201370039 Search in Google Scholar

5. Western, C. (1974). Acetonitrile-based solvents:their application in thinlayer chromatography of cyclic nucleotides, nucleosides, purine, and pyrimidines. Anal. Biochem. 60, 589–595. DOI: 10.1016/0003-2697(74)90271-1.10.1016/0003-2697(74)90271-1 Search in Google Scholar

6 . Tavazzi, I., Fontannaz, P. & Giuffrida, F., (2018). Quantification of glycerophospholipids and sphingomyelin in human milk and infant formula by high performance liquid chromatography coupled with mass spectrometer detector. J. Chromatogr. B, 1072, 235–243. DOI: 10.1016/j.jchromb.2017. Search in Google Scholar

7. Muñoz, R., Montón, J.B., Burguet, M.C. & Torre. J. (2006). Separation of isobutyl alcohol and isobutyl acetate by extractive distillation and pressure-swing distillation: Simulation and optimization. Sep. Puric. Technol. 50, 175–183. DOI: 10.1016/j.seppur.2005. Search in Google Scholar

8. Li, W., Xu, B., Lei, Z. & Dai, C. (2018). Separation of benzene and cyclohexane by extractive distillation intensified with ionic liquid Chem. Eng. Process., 126, 81–89. DOI: 10.1016/j.cep.2018. Search in Google Scholar

9 . Lei, Z., Dai, C. & Zhu, J. (2014). Extractive distillation with ionic liquids: a review. ALCHE J. 60, 3312–3329. DOI: 10.1002/aic.14537.10.1002/aic.14537 Search in Google Scholar

10. Lei, Z., Chen, B. & Ding, Z. (2005). Special Distillation Processes[M].10.1016/B978-044451648-0/50004-5 Search in Google Scholar

11. Ma, S., Hou, Y. & Sun, L. (2017). Simulation and experiment for ethanol dehydration using low transition temperature mixtures(LTTMs) as entrainers. Chem. Eng. Process. 121, 71–80. DOI: 10.1016/j.cep.2017. Search in Google Scholar

12. Zhu, Z., Geng, X., He, W., Chen, C., Wang, Y. & Gao. J. (2018).Computer-aided screening of ionic liquids as entrainers for separating methyl acetate and methanol via extractive distillation. Ind. Eng. Chem. Res. 57, 9656–9664. DOI: 10.1021/acs.iecr.8b01355.10.1021/acs.iecr.8b01355 Search in Google Scholar

13. Abbott, A.P., Capper, P. & Davies, D. (2003). Novel solvent properties of choline chloride/urea mixtures”. Chem. Commun. 7, 70–71. DOI: 10.1039/B210714G.10.1039/b210714g12610970 Search in Google Scholar

14. Gengan, S. & Moban, S. (2012). Structure, composition and corrosion resistance studies of Co–Cr alloy electrodeposited from deep eutectic solvent (DES). Alloys Compd. 522, 162–166. DOI: 10.1016/j.jallcom.2012. Search in Google Scholar

15. Zhao, H., Baker, G. & Holmes, S. (2011). New eutectic inoic liquids for lipase activation and enzymatic preparation of biodiese. Org. Biomol. Chem., 9,1908–1916. DOI: 10.1039/c0ob01011a.10.1039/c0ob01011a341687121283901 Search in Google Scholar

16. Jancheva, M., Grigorakisa, S., Loupassakia, D. & Makrisb, P. (2017). Optimised extraction of antioxidant polyphenols from Satureja thymbra using newly designed glycerol-based natural low-transition temperature mixtures (LTTMs). J. Appl. Res. Med. Aroma. 6, 31–40. DOI: 10.1016/j.jarmap.2017. Search in Google Scholar

17. Zhang, L., Shen, D., Zhang, Z. & Wu, X. (2017). Experimental Measurement and Modeling of Vapor−Liquid Equilibrium for the Ternary System Water + Acetonitrile + Ethylene Glycol. J. Chem. Eng. Data, 62, 1725–1731.10.1021/acs.jced.7b00178 Search in Google Scholar

18. Bandhana, S., Neetu, S., Tarun, J. & Parminder, S. (2018). Acetonitrile Dehydration via Extractive Distillation Using Low Transition Temperature Mixtures as Entrainers. J. Chem. Eng. Data, 63, 2921–2930. DOI: 10.1021/acs.jced.8b00228.10.1021/acs.jced.8b00228 Search in Google Scholar

19. Zhang, L., Wang, X. & Zhu, X. (2016). Experimental Measurement and Modeling of Vapor–Liquid Equilibrium for the Ternary Systems Water + Ethanol + Ethylene Glycol, Water + 2-Propanol + Ethylene Glycol, and Water + 1-Propanol + Ethylene Glycol”. J. Chem. & Engin. 61(7), 2596–2604. DOI: 10.1021/acs.jced.6b00264.10.1021/acs.jced.6b00264 Search in Google Scholar

20. Asprion, N., Kaibel, G., (2010). Dividing Wall Columns, Fundamentals and recent Advances”. Chem. Eng. Process. Process Intesif. 49,139–146. DOI: 10.1016/j.cep.2010. Search in Google Scholar

21. Schultz, M., Stewartt, D. & Harris, J. (2002). Reduce costs with dividing-wall columns. Chem. Eng. Process. 98, 64–71. Search in Google Scholar

22. Zhang, Z., Wang, C., Guang, C. & Wang, C. (2019). Separation of propylene oxide-methanol-water mixture via enhanced extractive distillation: Design and control. Chem. Eng. Process.144,107651.10.1016/j.cep.2019.107651 Search in Google Scholar

23. Kiss, A.A., David, J. & Suszwalak, D.J. (2012). Enhanced bioethanol dehydration by extractive and azeotropic distillation in dividing-wall columns. Sep. Puric. Technol. 86, 70–78. DOI: 10.1016/j.seppur.2011. Search in Google Scholar

24. Zhao, Y., Ma, K., Bai, W., Du, D., Zhu, Z. & Wang, Y. (2018). Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol. Energy. 148, 296–308. DOI: 10.1016/j.seppur.2019. Search in Google Scholar

25. Sun, L, Chang, X. & Zhang, Y. (2010). Reducing energy consumption and CO2 emissions in thermally coupled azetropic distillation. Chem. Eng. Technol. 33, 395–404. DOI: 10.1016/j. cherd.2009.08.006. Search in Google Scholar

26. Wu, Y., Hsu, P. & Chien, I. (2013). Critical Assessment of the Energy-Saving Potential of an Extractive Dividing-Wall Column. Ind. Eng. Chem. Res. 52, 5384–5399. DOI: 10.1021/ie3035898.10.1021/ie3035898 Search in Google Scholar

27. Yu,. J., Wang, S. & Huang, K. (2015). Improving the perfoamance of extractive dividing-wall columns with intermediate heating. Ind. Eng. Chem. Res. 54, 2709–2723. DOI: 10.1021/ie503148t.10.1021/ie503148t Search in Google Scholar

28. Douglas, J.M. (1988). Conceptual Design of Chemcal Processes [M]. New York: McGraw-Hill, 345–350. Search in Google Scholar

Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering