1. bookVolume 23 (2021): Issue 2 (June 2021)
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
access type Open Access

Autothermal Reforming of Diesel Oil for PdCeCrFeCu/Al2O3-Catalyzed Hydrogen Production

Published Online: 15 Jul 2021
Page range: 12 - 19
Journal Details
License
Format
Journal
First Published
03 Jul 2007
Publication timeframe
4 times per year
Languages
English
Abstract

Zero-dimensional two-stage SOFC stacks dynamic model was developed to investigate the effect of operating parameters on stacks performance. The model resolves spatially thermal and thermo-electrochemical behaviour for electrochemical reactions, Catalytic Partial Oxidation and Steam Reforming processes. Design variables and thermo-electrochemical properties were obtained from in-house-fabricated SOFCs carried out by project partners. The completed SOFCs based Combined Heat and Power, CHP, system model was validated by data18 and numerical results obtained at steady-state mode showing its high-fidelity. A parametric study with respect to key operating parameters including changes in fuel utilization, lambda number and current density values was conducted. The global CHP system dynamic response, in term of the current/voltage delivered by two-stage SOFC stacks, under a fixed fuel utilization, has been determined resulting in greater variations in the voltage of a single cell in the first stack in comparison to the corresponding values in the second stack.

Keywords

1. Al-Musa, A., Al-Saleh, M., Ioakeimidis, Z., Ouzounidou, M., Yentekakis, I., Konsolakis, M. & Marnellos, G. (2014). Hydrogen production by iso-octane steam reforming over Cu catalysts supported on rare earth oxides (REOs). Inter. J. Hydrog. Energ., 39, 1350–1363. DOI: 10.1016/j.ijhydene.2013.11.013.Open DOISearch in Google Scholar

2. Kothari, R., Buddhi, D. & Sawhney, R.L. (2008). Comparison of environmental and economic aspects of various hydrogen production methods. Renew. Sust. Energ. Rev., 12, 553–563. DOI: 10.1016/j.rser.2006.07.012.Open DOISearch in Google Scholar

3. Fernández, A., Arzac, G., Vogt, U., Hosoglu, F., Borg-schulte, A., de Haro, M.J., Montes, O. & Züttel, A. (2016). Investigation of a Pt containing washcoat on SiC foam for hydrogen combustion applications. Appl. Catal. B: Environ., 180, 336–343. DOI: 10.1016/j.apcatb.2015.06.040.Open DOISearch in Google Scholar

4. Tollefson, J. & Monastersky, R. (2012). The global energy challenge: A wash with carbon. Nature, 491, 654–655. DOI: 10.1038/491654a.Open DOISearch in Google Scholar

5. Li, C., Zhao, X., Wang, A., Huber, G.W. & Zhang, T. (2015). Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev., 115, 11559–11624. DOI: 10.1021/acs.chemrev.5b00155.Open DOISearch in Google Scholar

6. Rodrigues, C.P. & Schmal, M. (2011). Nickel-alumina wash coating on monoliths for the partial oxidation of ethanol to hydrogen production. Inter. J. Hydrog. Energy, 36, 10709–10718. DOI: 10.1016/j.ijhydene.2011.05.175.Open DOISearch in Google Scholar

7. Ciambelli, P., Palma, V. & Palo, E. (2010). Comparison of ceramic honeycomb monolith and foam as Ni catalyst carrier for methane autothermal reforming. Catalysis Today, 155, 92–100. DOI: 10.1016/j.cattod.2009.01.021.Open DOISearch in Google Scholar

8. Liu, W.J., Jiang, H. & Yu, H.Q. (2015). Thermochemical conversion of lignin to functional materials: A review and future directions. Green. Chem., 17, 4888–4907. DOI: 10.1039/c5gc01054c.Open DOISearch in Google Scholar

9. Recari, J., Berrueco, C., Abelló, S., Montané, D. & Farriol, X. (2014). Effect of temperature and pressure on characteristics and reactivity of biomass-derived chars. Bioresour. Technol., 170, 204–210. DOI: 10.1016/j.biortech.2014.07.080.Open DOISearch in Google Scholar

10. Faure, R., Rossignol, F., Chartier, T., Bonhomme, C., Maître, A., Etchegoyen, G., Del Gallo, P. & Gary, D. (2011). Alumina foam catalyst supports for industrial steam reforming processes. J. Eur. Ceramic Soc., 31, 303–312. DOI: 10.1016/j.jeurceramsoc.2010.10.009.Open DOISearch in Google Scholar

11. Carpenter, D., Westover, T.L., Czernik, S. & Jablonski, W. (2014). Biomass feedstocks for renewablefuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem., 16, 384–406. DOI: 10.1039/c3gc41631c.Open DOISearch in Google Scholar

12. Walmsley, T.G., Walmsley, M.R.W., Varbanov, P.S. & Klemes, J.J. (2018). Energy ratio analysis and accounting for renewable and non-renewable electricity generation: A review, Renew. Sust. Energ. Rev., 98, 328–345. DOI: 10.1016/j.rser.2018.09.034.Open DOISearch in Google Scholar

13. Turner, J., Sverdrup, G., Mann, M.K., Maness, P.C., Kroposki. B., Ghirardi, M., Evans, R.J. & Blake, D. (2008). Renewable hydrogen production. Int. J. Energy Res., 32, 379–407. DOI: 10.1002/er.1372.Open DOISearch in Google Scholar

14. Dincer, I. & Acar, C. (2015). Review and evaluation of hydrogen production methods for better sustainability. Int. J. Hydrog. Energy, 40, 11094–11111. DOI: 10.1016/j.ijhydene.2014.12.035.Open DOISearch in Google Scholar

15. Carmo, M., Fritz, D.L., Mergel, J. & Stolten, D. (2013). A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy, 38, 4901–4934. DOI: 10.1016/j.ijhydene.2013.01.151.Open DOISearch in Google Scholar

16. Nam, J.Y. & Logan, B.E. (2011). Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell. Int. J. Hydrog. Energy, 36, 15105–15110. DOI: 10.1016/j.ijhydene.2011.08.106.Open DOISearch in Google Scholar

17. Barczuk, P.J., Lewera, A., Miecznikowski, K., Kulesza, P. & Augustyński, J. (2009). Visible light-driven photoelectro-chemical conversion of the by-products of the ethanol fuel cell into hydrogen. J. Electroanal. Chem., 12, B165–B166. DOI: 10.1149/1.3236383.Open DOISearch in Google Scholar

18. Pinna, F. (1998). Supported metal catalysts preparation. Catalysis Today, 41, 129–137. DOI: 10.1016/S0920-5861(98)00043-1.Open DOISearch in Google Scholar

19. Martinez-Frias, J. & Pham, A.Q. & Aceves, S.M. (2003). A natural gas-assisted steam electrolyzer for high-efficiency production of hydrogen. Int. J. Hydrog. Energy, 28, 483–490. DOI: 10.1016/S0360-3199(02)00135-0.Open DOISearch in Google Scholar

20. Ambroise, E., Courson, C., Roger, A.C., Kiennemann, A., Blanchard, G., Rousseau, S., Carrier, X., Marceau, E., La Fontaine, C. & Villain, F. (2010). Exhaust gas recirculation for onboard hydrogen production by isooctane reforming: Comparison of performances of metal/ceria-zirconia based catalysts prepared through pseudo sol-gel or impregnation methods. Catalysis Today, 154, 133–141. DOI: 10.1016/j.cattod.2009.12.010.Open DOISearch in Google Scholar

21. Santos, D., Lisboa, J., Passos, F. & Noronha, F. (2004). Characterization of steam-reforming catalysts. Brazilian J. Chem. Eng., 21, 203–209. DOI: 10.1590/S0104-66322004000200009.Open DOISearch in Google Scholar

22. Pinho, A. de R., de Almeida, M.B., Mendes, F.L., Casavechia, L.C., Talmadge, M.S., Kinchin, C.M. & Chum, H.L. (2017). Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production. Fuel, 188, 462–473. DOI: 10.1016/j.fuel.2016.10.032.Open DOISearch in Google Scholar

23. Mante, O.D., Dayton, D.C., Gabrielsen, J., Ammitzboll, N.L., Barbee, D., Verdier, S. & Wand, K. (2016). Integration of catalytic fast pyrolysis and hydroprocessing: a pathway to refinery intermetiates and “drop-in” fuels from biomass. Green Chem., 18, 6123–6135. DOI: 10.1039/C6GC01938B.Open DOISearch in Google Scholar

24. Wei, L., Yong, C., Xu, D., Zhe, Z., Chao, Z.S. & Deng, Y.L. (2016). High efficiency hydrogen evolution from native biomass electrolysis. Energy Environ. Sci., 9, 467–472. DOI: 10.1039/c5ee03019f.Open DOISearch in Google Scholar

25. Lv, H., Geletii, Y.V., Zhao, C.C., Vickers, J.W., Zhu, G.B., Luo, Z., Song, J., Lian, T.Q., Musaev, D.G. & Hill, D.L. (2012). Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev., 41, 7572–7589. DOI: 10.1039/c2cs35292c.Open DOISearch in Google Scholar

26. Symes, M.D. & Cronin, L. (2013). Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer. Nat. Chem., 5, 403–409. DOI: 10.1038/nchem.1621.Search in Google Scholar

27. Bellussi, G., Rispoli, G., Landoni, A., Millini, R., Molinari, D., Montanari, E., Moscotti, D. & Pollesel, P. (2013). Hydro-conversion of heavy residues in slurry reactors, Developments and perspectives, J. Catalysis, 308, 189–200. DOI: 10.1016/j.jcat.2013.07.002.Open DOISearch in Google Scholar

29. Lin, L., Wu, L.Q., Sui, L.R. & He, S.H. (2018). Autothermal Reforming of Diesel to Hydrogen and Activity Evaluation. Energy Fuels, 32, 7971–7977. DOI: 10.1021/acs.energyfuels.8b01431.Open DOISearch in Google Scholar

30. Rana, M.S., Sámano, V., Ancheyta, J. & Diaz, J. (2007). A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 86, 1216–1231. DOI: 10.1016/j.fuel.2006.08.004. DOI: 10.1016/j.fuel.2006.08.004.Open DOISearch in Google Scholar

31. Zhang, S., Liu, D., Deng, W. & Que, G. (2007). A Review of Slurry-Phase Hydrocracking Heavy Oil Technology. Energy Fuels, 21, 3057–3062. DOI: 10.1021/ef700253f.Open DOISearch in Google Scholar

32. Yang, H., Kudo, S., Hazeyama, S., Norinaga, K., Masek, O. & Hayashi, J. (2013). Detailed analysis of residual volatiles in chars from the pyrolysis of biomass and lignite. Energy Fuels, 27, 3209–3223. DOI: 10.1021/ef4001192.Open DOISearch in Google Scholar

33. Kaila, R.K. & Krause, A.O.I. (2006). Autothermal reforming of simulated gasoline and diesel fuels. Internat. J. Hydrog. Energy, 31, 1934–1941. DOI: 10.1016/j.ijhydene.2006.04.004.Open DOISearch in Google Scholar

34. Ahmed, S.M. & Krumpelt. (2001). Hydrogen from hydrocarbon fuels for fuel cells. Inte. J. Hydrog. Energy, 26, 291–301. DOI: 10.1016/S0360-3199(00)00097-5.Open DOISearch in Google Scholar

35. Chen, Y.H., Xu, H.Y., X.L. Jin & Xiong, G.X. (2006). Integration of gasoline prereforming into autothermal reforming for hydrogen production. Catlysis Today, 116, 334–340. DOI: 10.1016/j.cattod.2006.05.065.Open DOISearch in Google Scholar

Recommended articles from Trend MD

Plan your remote conference with Sciendo