Cite

1. Zygmunt, B. & Buczkowski, D. (2007). Influence of Ammonium Nitrate Prills’ Properties on Detonation Velocity of ANFO. Propellants Explos. Pyrotech. 32(5), 411–414. DOI: 10.1002/prep.200700045.10.1002/prep.200700045Search in Google Scholar

2. Najlepsze Dostępne Techniki (BAT) Wytyczne dla Branży Chemicznej w Polsce (2005), Przemysł Wielkotonażowych Chemikaliów Nieorganicznych, Amoniaku, Kwasów i Nawozów Sztucznych, 13–75, 98–111, Min. Środ., Warszawa.Search in Google Scholar

3. Oommen, C. & Jain, S.R. (1999). Ammonium nitrate: a promising rocket propellant oxidizer. J. Hazard. Mater. A67, 253–281. DOI: 10.1016/S0304-3894(99)00039-4.10.1016/S0304-3894(99)00039-4Search in Google Scholar

4. Kumar, P., Joshi, P.C. & Kumar, R. (2016). Thermal decomposition and combustion studies of catalyzed AN/KDN based solid propellants. Combust. Flame. 166, 316–332. DOI: 10.1016/j.combustflame.2016.01.032.10.1016/j.combustflame.2016.01.032Search in Google Scholar

5. Kohga, M. & Okamoto, K. (2011). Thermal decomposition behaviors and burning characteristics of ammonium nitrate/polytetrahydrofuran/glycerin composite propellant. Combust. Flame. 158, 573–582. DOI: 10.1016/j.combustflame.2010.10.009.10.1016/j.combustflame.2010.10.009Search in Google Scholar

6. Shiota, K., Matsunaga, H. & Miyake, A. (2017). Effects of amino acids on solid-state phase transition of ammonium nitrate. J. Therm. Anal. Calorim. 127, 851–856. DOI: 10.1007/s10973-016-5416-8.10.1007/s10973-016-5416-8Search in Google Scholar

7. Asgari, A., Ghan,i K., Keshavarz, M.H., Mousaviazar, A. & Khajavian, R. (2018). Ammonium nitrate-MOF-199: A new approach for phase stabilization of ammonium nitrate. Thermochim. Acta 667, 148–152. DOI: 10.1016/j.tca.2018.07.018.10.1016/j.tca.2018.07.018Search in Google Scholar

8. Dana, A.G., Shter, G.E. & Grader, G.S. (2014). Thermal analysis of aqueous urea ammonium nitrate alternative fuel. RSC Adv. 4, 1–14. DOI: 10.1039/C4RA04381B.10.1039/C4RA04381BSearch in Google Scholar

9. Keskar, M., Vittal Rao, T.V. & Sali, S.K. (2010). Solid state reactions of UO2, ThO2 and (U,Th)O2 with ammonium nitrate. Thermochim. Acta 510, 68–74. DOI: 10.1016/j.tca.2010.06.024.10.1016/j.tca.2010.06.024Search in Google Scholar

10. Kohga, M. & Togo, S. (2018). Influence of iron oxide on thermal decomposition behavior and burning characteristics of ammonium nitrate/ammonium perchlorate-based composite propellants. Combust. Flame. 192, 10–24. DOI: 10.1016/j.combustflame.2018.01.040.10.1016/j.combustflame.2018.01.040Search in Google Scholar

11. Oxley, J.C., Smith, J. L., Rogers, E. & Yu, M. (2002). Ammonium nitrate: thermal stability and explosivity modifiers. Thermochim. Acta 384, 23–45. DOI: 10.1016/S00406031(01)00775-4.Search in Google Scholar

12. Yang, M., Chen, X., Wang, Y., Yuan, B., Niu, Y., Zhang, Y., Liao, R. & Zhang, Z. (2017). Comparative evaluation of thermal decomposition behavior and thermal stability of powdered ammonium nitrate under different atmosphere conditions. J. Hazard. Mater. 337, 10–19. DOI: 10.1016/j.jhazmat.2017.04.063.10.1016/j.jhazmat.2017.04.06328501639Search in Google Scholar

13. Yang, M., Chen, X., Yuan, B., Wang, Y., Rangwala, A.S., Cao, H., Niu, Y., Zhang, Y., Fan, A. & Yin, S. (2018). Inhibition effect of ammonium dihydrogen phosphate on the thermal decomposition characteristics and thermal sensitivity of ammonium nitrate. J. Anal. Appl. Pyrol. 134, 195–201. DOI: 10.1016/j.jaap.2018.06.008.10.1016/j.jaap.2018.06.008Search in Google Scholar

14. Izato, Y. & Miyake, A. (2015). Thermal decomposition mechanism of ammonium nitrate and potassium chloride mixtures. J. Therm. Anal. Calorim. 121, 287–294. DOI: 10.1007/s10973-015-4739-1.10.1007/s10973-015-4739-1Search in Google Scholar

15. Gunawan, R. & Zhang, D. (2009). Thermal stability and kinetics of decomposition of ammonium nitrate in the presence of pyrite. J. Hazard. Mater. 165, 751–758. DOI: 10.1016/j.jhazmat.2008.10.054.10.1016/j.jhazmat.2008.10.05419056177Search in Google Scholar

16. Han, Z., Sachdeva, S., Papadaki, M.I. & Sam Mannan, M. (2015). Ammonium nitrate thermal decomposition with additives. J. Loss Prevent. Proc. 35, 307–315. DOI: 10.1016/j.jlp.2014.10.011.10.1016/j.jlp.2014.10.011Search in Google Scholar

17. Han, Z., Sachdeva, S., Papadaki, M.I. & Sam Mannan, M. (2016). Effects of inhibitor and promoter mixtures on ammonium nitrate fertilizer explosion hazards. Thermochim. Acta 624, 69–75. DOI: 10.1016/j.tca.2015.12.005.10.1016/j.tca.2015.12.005Search in Google Scholar

18. Sinditskii, V.P., Egorshev, V.Y., Levshenkov, A.I. & Serushkin, V.V. (2005). Ammonium nitrate: combustion mechanism and the role of additives. Propell. Explos. Pyrot. 30(4), 269–280. DOI: 10.1002/prep.200500017.10.1002/prep.200500017Search in Google Scholar

19. Tan, L., Xia, L., Wu, Q., Xu, S. & Liu, D. (2015). Effect of urea on detonation characteristics and thermal stability of ammonium nitrate. J. Loss Prevent. Proc. 38, 169–175. DOI: 10.1016/j.jlp.2015.09.012.10.1016/j.jlp.2015.09.012Search in Google Scholar

20. Madany, G.H. & Burnet, G. (1968). Inhibition of the thermal decomposition of ammonium nitrate. J. Agr. Food Chem. 16(1), 136–141.10.1021/jf60155a024Search in Google Scholar

21. Klimova, I., Kaljuvee, T., Turn, L., Bender, V., Trikkel, A. & Kuusik, R. (2011). Interactions of ammonium nitrate with different additives. J. Therm. Anal. Calorim. 105, 13–26. DOI: 0.1007/s10973-011-1514-9.10.1007/s10973-011-1514-9Search in Google Scholar

22. Kaljuvee, T., Edro, E. & Kuusik, R. (2008). Influence of lime-containing additives on the thermal behaviour of ammonium nitrate. J. Therm. Anal. Calorim. 92, 215–21. DOI: 10.1007/s10973-007-8769-1.10.1007/s10973-007-8769-1Search in Google Scholar

23. Popławski, D., Hoffmann, J., Hoffmann, K., Effect of carbonate minerals on the thermal stability of fertilisers containing ammonium nitrate. J. Therm. Anal. Calorim. 124, 1561–1574. DOI: 10.1007/s10973-015-5229-1.10.1007/s10973-015-5229-1Search in Google Scholar

24. Pittman, W., Han, Z., Harding, B., Tosas, C., Jiang, J., Pineda, A. & Sam Mannan, M. (2014). Lessons to be learned from an analysis of ammonium nitrate disasters in the last 100 years. J. Hazard. Mater. 280, 472–477. DOI: 10.1016/j. hazmat.2014.08.037.Search in Google Scholar

25. Cao, H., Jiang, L., Duan, Q., Zhang, D., Chen, H. & Sun, J. (2019). An experimental and theoretical study of optimized selection and model reconstruction for ammonium nitrate pyrolysis. J. Hazard. Mater. 364, 539–547. DOI: 10.1016/j. jhazmat.2018.10.048.Search in Google Scholar

26. Yang, M., Chen, X., Wang, Y., Yuan, B., Niu, Y., Zhang, Y., Liao, R. & Zhang, Z. (2017). Comparative evaluation of thermal decomposition behavior and thermal stability of powdered ammonium nitrate under different atmosphere conditions. J. Hazard. Mater. 337, 10–19. DOI: 10.1016/j.jhazmat.2017.04.063.10.1016/j.jhazmat.2017.04.06328501639Search in Google Scholar

27. Skarlis, S.A., Nicolle, A., Berthout, D., Dujardin, C. & Granger, P. (2014). Combined experimental and kinetic modeling approaches of ammonium nitrate thermal decomposition. Thermochim. Acta. 584, 58–66. DOI: 10.1016/j.tca.2014.04.004.10.1016/j.tca.2014.04.004Search in Google Scholar

28. Izato, Y., Shiota, K. & Miyake, A. (2019). Condensed--phase pyrolysis mechanism of ammonium nitrate based on detailed kinetic model. J. Anal. Appl. Pyrol. DOI: 10.1016/j. jaap.2019.104671.Search in Google Scholar

29. Kaniewski, M., Hoffmann, K. & Hoffmann, J. (2019). Influence of selected potassium salts on thermal stability of ammonium nitrate. Thermochim. Acta. 678. DOI: 10.1016/j.tca.2019.178313.10.1016/j.tca.2019.178313Search in Google Scholar

eISSN:
1899-4741
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Industrial Chemistry, Biotechnology, Chemical Engineering, Process Engineering